Версия 1.0

5400TP045A-031(6)-10 / 20 / 40 / 60 / 80 / 100 / 120

Основные особенности

- Напряжение питания:
 - для группы А:

 $U_{\Pi NT1}$ (VDD1, VDD2, VDD3) = 4,0 B...5,25 B;

 $U_{\Pi UT2}$ (VDDPR) = 4,0 B...5,25 B;

– для группы Б:

U_{ПИТ1} (VDD1, VDD2, VDD3) = 3,0 B...5,25 B;

 $U_{\Pi MT2}$ (VDDPR) = 4,0 B...5,25 B;

- Коэффициент усиления:
 - 10 В/В (микросхема 5400ТР045А-31(6)-10);
 - 20 В/В (микросхема 5400ТР045А-31(6)-20);
 - 40 В/В (микросхема 5400ТР045А-31(6)-40);
 - 60 В/В (микросхема 5400ТР045А-31(6)-60);
 - 80 В/В (микросхема 5400ТР045А-31(6)-80);
 - 100 В/В (микросхема 5400ТР045А-31(6)-100);
 - 120 В/В (микросхема 5400ТР045А-31(6)-120);
- Напряжение смещение нуля не более 0,2 мВ;
- Скорость нарастания выходного напряжения ОУ 4,5 В/мкс;
- Температурный диапазон от –60°С до +125°С.

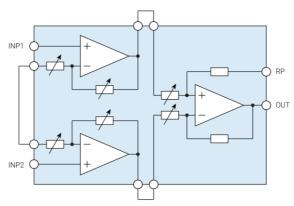


Рисунок 1. Структурная схема

Рисунок 2. Внешний вид микросхемы 5400TP045A-031(6)

Д – обозначение микросхемы 5400ТР045А 6 – номер прошивки запрограммированной микросхемы X – коэффициент усиления

Y – группа А или Б

Общее описание

Микросхема 5400TP045A-031(6) — инструментальный усилитель с фиксированным коэффициентом усиления. ИМС является запрограммированной версией микросхемы 5400TP045A-031 (ПАМС). Микросхема выполнена на базе радиационно-стойкого аналого-цифрового БМК 5400TP04 по технологии КНИ. Питание каждого блока может обеспечиваться как с помощью встроенного линейного регулятора, так и от внешних источников питания.

Коэффициент усиления выбирается при заказе:

5400ТР045А-031(6)-10 - с коэффициентом усиления 10;

5400ТР045А-031(6)-20 - с коэффициентом усиления 20;

5400ТР045А-031(6)-40 - с коэффициентом усиления 40;

5400ТР045А-031(6)-60 - с коэффициентом усиления 60;

5400ТР045А-031(6)-80 - с коэффициентом усиления 80;

5400ТР045А-031(6)-100 - с коэффициентом усиления 110;

5400ТР045А-031(6)-120 - с коэффициентом усиления 120.

Микросхема выполнена в 28-ми выводном металлокерамическом корпусе МК 5123.28-1.01.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

Электрические параметры микросхемы

Таблица 1. Электрические характеристики (температурный диапазон от -60°C до +125°C)

Поположно от поположно по поположно по поположно по поположно по поположно по	Норма параметра			
Параметр, единица измерения	не менее	типовое	не более 45	
Ток потребления, мА				
Напряжение смещения нуля, мВ			0,2	
Коэффициент усиления, В/В				
для микросхемы 5400ТР045А-031(6)-10	9,75	10	10,25	
для микросхемы 5400ТР045А-031(6)-20	19,5	20	20,5	
для микросхемы 5400ТР045А-031(6)-40	39	40	41	
для микросхемы 5400ТР045А-031(6)-60	58,5	60	61,5	
для микросхемы 5400ТР045А-031(6)-80	78	80	82	
для микросхемы 5400ТР045А-031(6)-100	97,5	100	102,5	
для микросхемы 5400ТР045А-031(6)-120	117	120	123	
Скорость нарастания выходного сигнала, В/мкс	9,0 ⁽¹⁾ 4,5 ⁽²⁾			
Выходное напряжение линейного регулятора, В	2,25		2,75	
Выходной ток линейного регулятора, мА	80			
Справочные д	анные	1	•	
Выходной ток, мА		15		
Полоса пропускания, МГц (при усилении 10 В/В)		0,6		
Ток покоя линейного регулятора, мА		0,5		
Примечание:	•	•	•	

¹⁾ норма на параметр при Ку = 10...60 В/В

Электростатическая защита

Микросхема имеет встроенную защиту от электростатического разряда до 1000 В по модели человеческого тела. Требует мер предосторожности.

²⁾ норма на параметр при Ку = 80...120 В/В

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

Предельно-допустимые и предельные режимы эксплуатации

Таблица 2(а). Предельно-допустимые и предельные режимы эксплуатации

Параметр, единица измерения	Предельно-допустимый режим		Предельный режим	
	не менее	не более	не менее	не более
Напряжение питания Uпит₁ (VDD1, VDD2, VDD3), B	4,0	5,25	-0,3	5,5
Напряжение питания Uпит2 (VDDPR), В	4,0	5,25	-0,3	5,5
Входное напряжение (INP1, INP2), В	-0,1	Uпит₁+0,1	-0,3	5,5
Входное напряжение линейного регулятора (VINLDO), В	4,0	5,25	-0,3	5,5
Выходной ток линейного регулятора, мА	_	50		80
Температура эксплуатации, °С	-60	+125	-60	+150

Таблица 2(б). Предельно-допустимые и предельные режимы эксплуатации

Параметр, единица измерения	-	допустимый ким	Предельный режим	
	не менее	не более	не менее	не более
Напряжение питания	3,0	5,25 ⁽¹⁾	-0,3	5,5
Uпит1 (VDD1, VDD2, VDD3), В	3,0	3,8(2)	-0,3	5,5
Напряжение питания U _{ПИТ2} (VDDPR), В	4,0	5,25	-0,3	5,5
Входное напряжение (INP1, INP2), В	-0,1	Uпит1+0,1	-0,3	5,5
Входное напряжение линейного регулятора (VINLDO), В	4,0	5,25	-0,3	5,5
Выходной ток линейного регулятора, мА	_	50	_	80
Температура эксплуатации, °С	-60	+125	-60	+150

Примечание:

¹⁾ напряжение питания при температуре эксплуатации от минус 25 °C до плюс 125 °C

²⁾ напряжение питания при температуре эксплуатации от минус 60 °C до плюс 125 °C

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

Конфигурация и функциональное описание выводов

Таблица 3. Функциональное описание выводов

№ вывода	Тип вывода	Наименование вывода	Назначение вывода
1, 2, 5, 25, 28	NC	-	Выводы не используются в данной конфигурации (подключить к общему выводу)
3	PWR	VDDPR	Вывод положительного напряжения питания цифровой части
4	PWR	VSSPR	Общий вывод напряжения питания цифровой части
6	Al	RN1	Коммутационный вывод
7	PWR	VDD1	Вывод положительного напряжения питания ОУ1
8	Al	OUT1	Коммутационный вывод
9	PWR	VSS1	Общий вывод
10	Al	INM1	Технологический вывод
11	Al	INP1	Инвертирующий вход усилителя
12	Al	INP3	Коммутационный вывод
13	Al	INM3	Технологический вывод
14	PWR	VSS3	Общий вывод
15	AO	OUT3	Выход усилителя
16	PWR	VDD3	Вывод положительного напряжения питания ОУ3
17	Al	RN3	Коммутационный вывод
18	Al	RP3	Вывод для подачи опорного уровня входного сигнала
19	Al	INP2	Неинвертирующий вход усилителя
20	Al	INM2	Технологический вывод
21	PWR	VSS2	Общий вывод
22	AO	OUT2	Коммутационный вывод
23	PWR	VDD2	Вывод положительного напряжения питания ОУ2
24	Al	RN2	Коммутационный вывод
26	AO	LDOOUT	Выход линейного регулятора
27	Al	VINLDO	Вход внешнего положительного напряжения питания линейного регулятора

Примечание:

AI – аналоговый вход,

АО – аналоговый выход,

PWR – вывод питания.

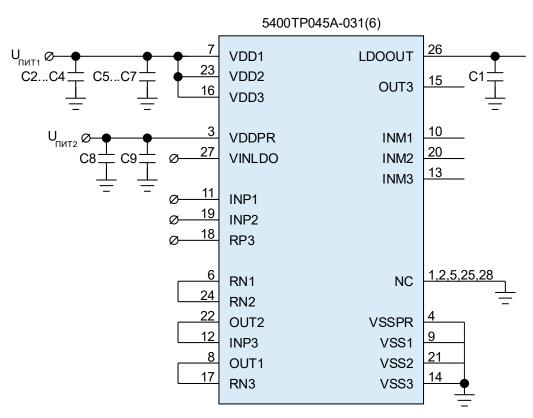
Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

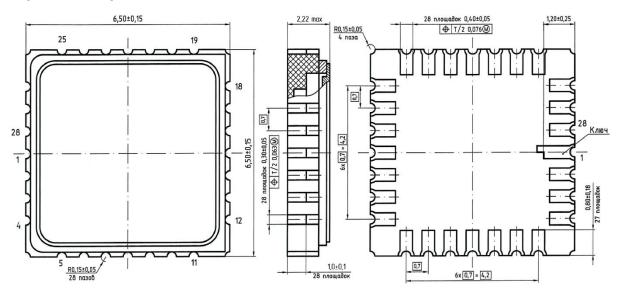
Рекомендуемая схема применения

Таблица 4. Таблица внешних компонентов

Компонент	Номинал
C1	0,11,0 мкФ
C2C4	1,0 мкФ (к каждому выводу VDD1VDD3)
C5C7	0,1 мкФ (к каждому выводу VDD1VDD3)
C8	1,0 мкФ
C9	0,1 мкФ

Конденсаторы либо высокочастотные керамические, либо сдвоенные. В случае сдвоенных конденсаторов, один из них обязательно должен быть высокочастотный керамический емкостью не менее 10 нФ. Шунтирующие конденсаторы должны располагаться на плате в непосредственной близости к соответствующим выводам микросхемы.




Рисунок 3. Рекомендуемая схема применения

Примечание:

Если не используется линейный регулятор напряжения, то вход VINLDO (вывод № 27) необходимо подключить к общему выводу, выход LDOOUT (вывод № 26) оставить в обрыве и конденсатор С1 не требуется.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

Габаритный чертеж

- 1. * Размеры для справок. 2. Нумерация выводных площадок показана условно.

Рисунок 4. Габаритный чертеж корпуса МК 5123.28-1.01 (размеры в мм)

Стр. 6 Версия 1.0

Информация для заказа

Обозначение	Маркировка	Корпус	Температурный диапазон	
Группа А				
5400ТР045А-031(6)-10 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316АА	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-20 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316БА	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-40 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ВА	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-60 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ГА	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-80 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ДА	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-100 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ЕА	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-120 группа А АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ЖА	MK 5123.28-1.01	−60°C+125°C	
Γ	руппа Б			
5400ТР045А-031(6)-10 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316АБ	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-20 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ББ	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-40 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ВБ	MK 5123.28-1.01	−60°C+125°C	
5400ТР045А-031(6)-60 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ГБ	MK 5123.28-1.01	−60°C+125°C	

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

Обозначение	Маркировка	Корпус	Температурный диапазон
5400ТР045А-031(6)-80 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ДБ	MK 5123.28-1.01	−60°C+125°C
5400ТР045А-031(6)-100 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ЕБ	MK 5123.28-1.01	−60°C+125°C
5400ТР045А-031(6)-120 группа Б АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-031Д16 дополнение №6 КФЦС.431260.003-031Д16-Д6	Д0316ЖБ	MK 5123.28-1.01	−60°C+125°C

Микросхемы категории качества «ВП» маркируются ромбом.

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-031Д16

Лист регистрации изменений

Дата	Версия	Изменения
20.10.2025	1.0	Исходная версия
		