

Лабораторная работа №4 Построение цифровых схем на ПАИС

Оглавление

Построение цифровых схем на ПАИС	2
Теоретические сведения	3
Инвертор	3
Логический элемент «2И»	3
Логический элемент «2И-НЕ»	3
Логический элемент «2ИЛИ»	1
Логический элемент «2ИЛИ-НЕ»	4
Аналоговый ключ	4
Лабораторное задание	5
1) Построить инвертор	5
2) Построить схему заданной логической функции	5
3) Построить аналоговый ключ	7
Порядок выполнения работы	3
Общие указания	3
Блоки, используемые в лабораторной работе	9
Блок ввода/вывода10)
Блок свободной конфигурации SPM10)
Резистор с настраиваемым сопротивлением1	1
Общий вывод1	1
5400TP035_core – блок параметров моделирования12	2
Моделирование12	2
Автоматическая трассировка схемы1	5
Прошивка и измерения1	5
Контроль результатов	7

Построение цифровых схем на ПАИС

Цель работы: обучение построению схем на ПАИС с использованием блока SPM. Изучение и повторение теории цифровой электроники.

Оборудование: микросхема 5400ТР035, отладочная плата, программатор, комплект интерфейсных проводов, персональный компьютер, генератор электрических сигналов, осциллограф, блок питания.

Программное обеспечение: ПО программатора «DCSProg-1», CAПР «DCSElectric».

Продолжительность работы: 4 академических часа.

Теоретические сведения

Инвертор

Вход	Выход
0	1
1	0

Логический элемент «2И»

Вход 1	Вход 2	Выход
0	0	0
0	1	0
1	0	0
1	1	1

Логический элемент «2И-НЕ»

Вход 1	Вход 2	Выход
0	0	1
0	1	1
1	0	1
1	1	0

Логический элемент «2ИЛИ»

Вход 1	Вход 2	Выход
0	0	0
0	1	1
1	0	1
1	1	1

Логический элемент «2ИЛИ-НЕ»

Вход 1	Вход 2	Выход
0	0	1
0	1	0
1	0	0
1	1	0

Аналоговый ключ

Аналоговый ключ – устройство, которое передает сигнал со входа на выход в зависимости от управляющего сигнала. Функциональная схема аналогового ключа показана Рисунок 1.

Рисунок 1. Функциональная схема аналогового ключа.

Лабораторное задание

1) Построить инвертор.

Подать на вход сигнал с внешнего источника прямоугольных импульсов амплитудой от 0 В до 5,0 В с частотой 250 кГц. Длительность импульсов установить в половину периода (скважность 50%).

Построить инвертор по схеме, изображенной Рисунок 2. Определить задержку переключения и время переключения выходного сигнала. Внести результаты измерений Таблица 3.

Рисунок 2. Функциональная схема инвертора

Для данного пункта лабораторной работы необходимо использовать выходной цифровой буфер OUTPUT_DDR. Рекомендуется установить время моделирования 10 мкс (tstop=10 u) с шагом моделирования 100 нс (tstep=100 n).

2) Построить схему заданной логической функции.

Построить логический элемент по схемам Рисунок 3 (а,б,в,г,д,е,ж,з) в соответствии с вариантом Таблица 1. Определить задержку переключения и время переключения выходного сигнала. Внести результаты измерений Таблица 3.

Рисунок 3. Функциональная схема логических элементов

Для данного пункта лабораторной работы необходимо использовать выходной цифровой буфер OUTPUT_DDR. Рекомендуется установить время моделирования 2 мс (tstop=2 m) с шагом моделирования 100 нс (tstep=100 n).

Для двухвходовых схем подать на входы сигналы с внешних источников прямоугольных импульсов:

- сигнал амплитудой от 0 В до 5,0 В частотой 500 Гц;
- сигнал амплитудой от 0 В до 5,0 В частотой 1кГц.

Для трехвходовых схем подать на входы сигналы с внешних источников прямоугольных импульсов:

- сигнал амплитудой от 0 В до 5,0 В частотой 500 Гц;

- сигнал амплитудой от 0 В до 5,0 В частотой 1кГц;
- сигнал амплитудой от 0 В до 5,0 В частотой 2кГц.

Длительность импульсов установить в половину периода (скважность 50%).

3) Построить аналоговый ключ.

Подать на вход с внешнего источника синусоидальный сигнал с частотой 4 кГц и амплитудой 1,0 В относительно уровня 2,5 В, время задержки установить 4 мкс (TD=4 u).

На управляющий вход подать сигнал с внешнего источника прямоугольных импульсов амплитудой от 0 В до 5,0 В с частотой 1 кГц.

Построить комплементарный аналоговый ключ по схеме Рисунок 4. Определить задержку переключения, время переключения, выходное напряжение при открытом и закрытом ключе. Внести результаты измерений в Таблица 4.

Рисунок 4. Функциональная схема аналогового ключа

Для данного пункта лабораторной работы необходимо использовать выходной аналоговый буфер OUTPUT_ADR. Рекомендуется установить время моделирования 1 мс (tstop=1 m) с шагом моделирования 100 нс (tstep=100 n).

Для всех пунктов задания необходимо промоделировать схему в программе «DCSElectric». Запрограммировать микросхему с помощью программатора и ПО программатора «DCSProg-1». С помощью генератора подать входные сигналы на соответствующие выводы микросхемы на отладочной плате. С помощью осциллографа зарегистрировать значения выходного сигнала.

Логическая функция в пункте 2 определяется номером варианта согласно Таблица 1. Номер варианта определяется преподавателем. Задания 1 и 3 одинаковы для всех вариантов.

Вариант	Логическая функция
1	2И, ЗИЛИ-НЕ
2	2И-НЕ, ЗИЛИ
3	2ИЛИ, ЗИ-НЕ
4	2ИЛИ-НЕ, ЗИ

Таблица 1. Соответствие номера варианта и условия задания пункта 2

Порядок выполнения работы

Общие указания

Выполнение работы начинается с проектирования схемы в программе «DCSElectric». Для начала работы, выполните следующие действия:

- Запустите программу «DCSElectric»
- Откройте библиотеку:
 - о Выполните команду: File -> Open Library.
 - о В открывшемся окне откройте файл simulation.jelib

Путь к файлу ...\DCSElectric\Projects\5400TP035

Создайте свою схему в библиотеке:

- <u>Правой</u> кнопкой мыши нажмите на библиотеку «simulation», в контекстном меню выберете пункт «Create New Cell».
- о В появившемся окне «New Cell» в списке «View» выберите тип файла «schematic».
- В пункте «Name» назовите свою схему и нажмите «OK». Название должно содержать только латинские буквы, цифры и знак «_» без пробелов. Рекомендуемый формат: lab1_scheme_1.
- о Дважды нажмите <u>левой</u> кнопкой мыши на свою созданную схему.

Блоки, из которых проектируется схема, расположены в библиотеке symbol (Рисунок 5). Чтобы перенести компоненты из библиотеки в рабочее пространство, нажмите <u>левой</u> кнопкой мыши на нужный блок и, не отпуская кнопку, перетащите в рабочее пространство.

Рисунок 5. Расположение блоков библиотеки symbol в программе «DCSElectric».

Блоки, используемые в лабораторной работе

Таблица 2. Описание используемых в лабораторной работе блоков

Название блока	Описание блока
5400TP035_core	Параметры моделирования по времени
INPUT	Блок ввода
OUTPUT_ADR	Блок вывода с аналоговым буфером
OUTPUT_DDR	Блок вывода с цифровым буфером
RES	Резистор с настраиваемым сопротивлением
SPM_mini	Блок свободной конфигурации.
VSS	«Общий» вывод
vsin	Источник синусоидальных импульсов для подачи внешних воздействий
vpulse	Источник прямоугольных импульсов для подачи внешних воздействий

Блок ввода/вывода

Блок ввода предназначен для входных сигналов микросхемы. Вывод сигналов осуществляется напрямую, либо через аналоговый/цифровой буферы.

Цифровой буфер используется для вывода цифровых сигналов.

Для установки определенного входа (выхода) микросхемы необходимо в поле «input=0» («output_adr=0»/«output_ddr=0») ввести номер вывода микросхемы (Рисунок 6).

Рисунок 6. а) блок ввода; б) блок вывода с аналоговым буфером; в) блок вывода с цифровым буфером.

Блок свободной конфигурации SPM

Блок свободной конфигурации SPM представляет собой набор из n- и p-канальных МОПтранзисторов, резисторов и конденсаторов. Блок имеет матричную структуру и состоит из 32 ячеек. Структура повторяющейся ячейки приведена Рисунок 7:

Рисунок 7. Схема ячейки SPM.

А – n-канальный МОП-транзистор;

Б – р-канальный МОП-транзистор;

В – вывод подключения к VDDA;

Г – вывод подключения к VSSA;

Д – резисторы 16 кОм и 76 кОм;

Е – конденсатор 1 пФ.

Для замыкания ключа следует нажать на один из контактов ключа <u>левой</u> кнопкой мыши, а затем на противоположный контакт <u>правой</u> кнопкой мыши. Для правильного замыкания ключ подсвечивается желтым цветом при наведении на него курсора мыши.

Резистор с настраиваемым сопротивлением

Рисунок 8. Резистор с настраиваемым сопротивлением.

Для того, чтобы запрограммировать резистор RES на необходимое значение сопротивления нужно зажать клавишу «Ctrl», навести курсор на заданное по умолчанию значение соответствующего резистора и нажать <u>левой</u> кнопкой мыши, затем отпустить клавишу «Ctrl» и нажать <u>левой</u> кнопкой на это же значение резистора и заменить на нужное.

Максимальное значение сопротивления – 400 кОм, минимальное значение сопротивления – 80 кОм, шаг – 80 кОм.

Общий вывод

Рисунок 9. Общий» вывод.

Для коммутации блоков между собой следует нажать на один из контактов блока <u>левой</u> кнопкой мыши, а затем на контакт другого блока <u>правой</u> кнопкой мыши, либо произвести коммутацию вручную путем последовательной отрисовки проводника в необходимых областях. Для этого нужно нажать <u>левую</u> кнопку мыши на начальную точку, затем перевести курсор в необходимую область и нажать <u>правую</u> кнопку, повторять операцию до тех пор, пока не будет осуществлена коммутация нужных блоков.

Для автоматической трассировки важно, чтобы одному выводу блока соответствовало не более 1 провода. В противном случае схема будет разведена не полностью.

Рисунок 10. a) пример неправильного построения схемы; б) пример правильного построения схемы.

В некоторых случаях в работе автоматической трассировки могут возникать ошибки из-за некорректных замыканий связей. Для автоматического исправления связей используется команда Cleanup Pins (горячая клавиша «F8»).

5400TP035_core – блок параметров моделирования

Рисунок 11. блок параметров моделирования 5400TP035_core

Важно! Блок *5400TP035_core* отвечает за настройку параметров моделирования и конфигурирования. Он должен обязательно присутствовать в каждой схеме.

tstep – шаг моделирования;

tstop – время моделирования;

Более подробно можно посмотреть в «Руководство пользователя_5400ТР035_Приложение_А».

Моделирование

После того, как схема собрана, необходимо промоделировать ее и создать конфигурационную последовательность для дальнейшей зашивки.

С помощью источников напряжения задать внешние воздействия, для этого нужно перенести компоненты из библиотеки symbol в рабочее пространство. Чтобы перенести блоки в рабочее пространство нажмите левой кнопкой мыши на нужный блок и, не отпуская кнопку, перетащите в рабочее пространство.

Важно!

Источники напряжения необходимо подключать ко входу «source» блока ввода «INPUT». Выход блока «INPUT» нужно коммутировать с тем элементом, на который необходимо подать входной сигнал с используемого источника.

Источники сигналов имеют следующие параметры:

- vpulse источник прямоугольных импульсов:
 - о V1 значение напряжения нижнего уровня;
 - о V2-значение напряжения верхнего уровня;
 - о TD время задержки;
 - о TR время фронта (рекомендуемое значение 100 пс);
 - о TF время среза (рекомендуемое значение 100 пс);
 - о PW-ширина импульса;
 - о PER период.
- vsin источник синусоидальных импульсов:
 - о VO напряжение смещения;
 - о VA амплитуда;
 - о FREQ частота;
 - о TD время задержки;
 - о THETA коэффициент затухания.

Для задания параметров источников напряжения дважды нажать на параметр левой кнопкой мыши и вписать значение. Значения параметра вводится без указания единиц измерения. Чтобы ввести десятичную приставку, используются следующие обозначения: фемто-f, пико-р, нано-n, микро-u, милли-m, кило-K, мега-Meg, гига-G, тера-T.

Примечание:

Если после значения Вы напишите букву «М», то программа сочтет это за приставку «милли», точно так же, как и в случае с «m»! Поэтому, если Вам необходима приставка «мега», то после значения нужно вводить символы: «Мед».

После установки параметров источников, нужно задать параметры моделирования. Для этого необходимо перенести из библиотеки symbol блок «5400ТР035_core». Чтобы перенести блоки в рабочее пространство нажмите левой кнопкой мыши на нужный блок и, не отпуская кнопку, перетащите в рабочее пространство.

В данной лабораторной работе выполняется анализ по времени:

- tstep шаг моделирования. Чем меньше значение, тем детальнее график (больше точек в единицу времени) и тем дольше процесс моделирования.
- tstop время моделирования.

Рисунок 12. Параметры tran-моделирования.

Далее требуется обозначить выводы, которые необходимо контролировать (IN, OUT, REF и т.д.). Для обозначения вывода необходимо зайти в его свойства (клавиша «q» или двойное нажатие левой кнопкой мыши по проводу) и в поле «Name» ввести название (Рисунок 13).

Рисунок 13. Обозначение выводов после построения схемы

Следующий этап – моделирование. Для запуска моделирования выполнить команду:

Tools -> Simulation (Spice) -> Simulate или нажать на кнопку > на панели инструментов.

После окончания расчетов откроется окно LTspice IV с результатами моделирования. Для вывода графиков выполнить команду Plot Settings –> Add Trace (или нажать клавиши «Ctrl» + «A») и выбрать проводник. Выбор проводника осуществляется при помощи поисковой строки «Only list tracing matches», где вводятся номера или названия входов и выходов, соответствующие введенным в поля «Name». Например, если необходимо посмотреть сигнал на выходе с именем OUT, то в поисковой строке необходимо ввести «OUT» и нужный проводник будет обозначаться как «v(OUT)» (Рисунок 14).

	t	
	Only list traces matching	01
Available data:	Asterisks match colons	Cancel
I(b.xoutput_a@4.b.xca i(b.xpau@0.b.xcau_ma i(v.xoutput_a@4.vvpul v(output_a@4_output) v(xcau_comp@0.xcau v(xoutput_a@4.xcau_ v(xoutput_a@4.xcau	iu_macr@1.bvcvsout] acr@4.bvcvsout] macr@3.cascout1] macr@1.biaj	
v(xpau@0.xcau_macr(macr@1.cascout1) @4.cascout1)	

Рисунок 14. Окно вывода результатов моделирования

Некоторые инструменты программы моделирования LTspice IV:

- Увеличение интересующей области нажать левую кнопку мыши, и не отпуская, выделить интересующую область.
- Возврат масштаба к начальному нажать кнопку «Zoom full extents» в панели инструментов.
- Добавление координатной плоскости выполнить команду: Plot Settings -> Add Plot Pane.
- Вывод маркеров нажать левой кнопкой мыши по названию проводника.

Автоматическая трассировка схемы

Для создания конфигурационной последовательности необходимо выполнить команду:

Tools -> DCS PDC-> Autotracing (кнопка J* на панели инструментов).

После завершения процесса автоматической трассировки программа выдаст сообщение:

Message		×
()	Autotracing process completed	
	ОК	

Рисунок 15. Уведомление о успешном завершении автоматической трассировки

Всплывающее окно с сообщением об успешной трассировке схемы также означает, что конфигурационная последовательность экспортирована в текстовый файл...\DCSElectric\config\analog _config.txt.

Прошивка и измерения

Для записи пользовательской схемы в память микросхемы, необходимо:

- Вставить перемычку («джампер») в два верхних контакта разъема «Г» отладочной платы;
- Соединить программатор с ПК с помощью USB кабеля. Подсоединить шлейф к программатору и отладочной плате. Для корректного подключения программатора к отладочной плате следует первый вывод шлейфа (обозначен красным цветом) подключить к первому выводу на отладочной плате;
- Вставить микросхему в контактирующее устройство на отладочной плате;
- Открыть программу «DCSProg-1»;
- Выбрать тип микросхемы (выполнить команду: Микросхема -> Тип -> 5400ТР035);

(DCSProg					_]	×
Микросхема Обновление	Программатор	П	омощь				
Новая микросхема	F5	PON	//3				^
Тип	>		5400TP035_old	L			
Загрузить файл в буфер	F2	~	5400TP035				
Прошить	F4	Γ					
Прожечь	Ctrl+F4						
		Ĩ.,					

Рисунок 16. Меню программы «Микросхема»

- Загрузить конфигурационную последовательность построенной схемы (выполнить команду: Микросхема –> Загрузить файл в буфер (F2). В открывшемся окне выбрать файл analog_config.txt. Путь к файлу ...\DCSElectric\config\analog_config.txt.);
- Включить блок питания. Установить 10 В±5% постоянного напряжения. Ограничение по току 300 мА. Подсоединить сначала «землю» блока питания к «земле» разъема «А», затем питающий провод блока питания к выводу питания разъема «А». Включить подачу напряжения питания.

Примечание №1. Сначала включается блок питания, а затем его выводы подключаются к отладочной плате. Это необходимо для предотвращения выхода из строя микросхемы при скачках напряжения в момент включения блока питания.

Примечание №2. После подачи питания на микросхему и до ее прошивки, напряжение на блоке питания может просесть из-за установленного ограничения по току. После прошивки питание станет равным изначально установленному.

Запрограммировать микросхему (выполнить команду: Микросхема -> Прошить);

📀 DCSProg					_	
Микросхема	Обновление	Программатор	Помощь			
Новая ми	икросхема	F5				
Тип		>				
Загрузит	ь файл в буфер	F2				
Прошить	5	F4				
Прожечь		Ctrl+F4				

Рисунок 17. Программирование микросхемы

При условии правильного выполнения предыдущих инструкций, в основном окне программы «DCSProg-1» последние три строки будут заканчиваться надписью: «OK».

- Задать внешние воздействия на соответствующие выводы отладочной платы;
- Проконтролировать выходные сигналы с помощью осциллографа;

Занести результаты измерений в отчет.

Контроль результатов

Итогом выполненной работы является отчет, который содержит результаты выполненных пунктов задания. Результаты измерений необходимо занести в таблицы 3 и 4. Отчет считается успешным, если все построенные схемы функционируют корректно и, если проведен анализ причин несовпадения практически полученных и теоретически ожидаемых данных. Оформление и другие аспекты отчета определяются преподавателем.

Таблица 3. Результаты измерений пунктов 1 и 2 лабораторной работы

Параметр Элемент	Задержка переключения из «1» в «0», нс	Задержка переключения из «0» в «1», нс	Время переключения из «1» в «0», нс	Время переключения из «0» в «1», нс
Инвертор				
Логическая функция 1				
Логическая функция 2				

Таблица 4. Результаты измерений пункта 3 лабораторной работы

Параметр	Значение
Задержка переключения из «1» в «0», нс	
Задержка переключения из «0» в «1», нс	
Время переключения из «1» в «0», нс	
Время переключения из «0» в «1», нс	
Выходное напряжение при открытом ключе, В	
Выходное напряжение при закрытом ключе, В	