

Версия 1.2

5400ТР055А-008 (ПИКЛ)

Приложение А

Содер	жание
-------	-------

Описание DCS_Electric2
Настройка рабочей станции2
Рекомендуемые системные требования:2
Предварительная работа:2
Создание электрической схемы3
Работа в The Electric™ VLSI Design System3
Основные блоки схемы
Ключ
Ключ с управляющим сигналом5
Мультиплексор 2:15
LUT 4:1 (2 input Look-Up Tables)6
LUT 8:1 (3 input Look-Up Tables)6
Логический элемент AND 2:16
Логический элемент – инвертор7
Элемент – логическая функция7
Элемент D-триггер7
Элемент задержка7
Дешифратор 3:87
Моделирование электрической схемы8
Подготовка к моделированию8
Блоки внешних воздействий8
vpulse – источник прямоугольных импульсов8
vpwl – источник напряжения, задаваемый по точкам8
vsin – источник синусоидальных импульсов9
vsource – источник постоянного напряжения9
Создание конфигурационной последовательности 11
Лист регистрации изменений12

Описание DCS_Electric

Для работы с микросхемой 5400ТР055-008 (ПИКЛ) разработано программное обеспечение DCS_Electric. Программное обеспечение используется для проектирования, моделирования и конфигурирования схемы.

Настройка рабочей станции

Рекомендуемые системные требования:

- операционная система: Windows 7, Windows 8, Windows 10;
- оперативная память 4 ГБ;
- 8 ГБ свободного места на жёстком диске.

Предварительная работа:

- 1) Скопировать папку программой на локальный диск.
- 2) Установить Java из папки. Vnstall на диск C:\
- 3) Запустить файл electric.bat из папки с программой.
- 4) Загрузить настройки (выполняется один раз при первом запуске программы):
- File -> Preferences -> Import

Путь к файлу .\electric\Prefs\Cadence_style_PIKL.xml

Рисунок 1. Окно загрузки настроек при первом запуске программы

⁵⁾ Перезапустить программу.

Создание электрической схемы

Работа в The Electric™ VLSI Design System

1) Открыть проект (File -> Open Library)

.DCSElectric\Projects\5400TP055A_008\simulation.jelib

2) Создать новую схему (правой кнопкой мыши по библиотеке simulation -> Create New Cell).

В открывшемся окне в поле Name ввести название схемы, в поле View выбрать schematic.

😨 New Ce	11	×
Library:	simulation	\sim
Name:		
	schematic	^
	icon	
	layout	
	layout.skeleton	
View:	layout.compensated	
	VHDL	
	Verilog	
	documentation	
	documentation.waveform	\checkmark
Technology:	mocmos	\sim
	Cancel Make new window Ok	(

Рисунок 2. Окно создания новой схемы

3) Перенести схему *5400TP055A_008* из библиотеки *symbol* в рабочее пространство. Для этого нажмите на схему <u>левой</u> кнопкой мыши и, не отпуская кнопку, перетащите в рабочее пространство.

Рисунок 3. Расположение схемы 5400TP055A_008 в библиотеке symbol

4) Полная схема для проектирования представлена на рисунке ниже.

Рисунок 4. Полная схема 5400ТР055А-008 в рабочем поле программы

Навигация в графическом интерфейсе программы:

• Приближение и отдаление активного поля

Клавиша «Е» – приближение

Клавиша «W» – отдаление

Клавиша «Z» – масштабирование области

Клавиша «Ctrl» + прокрутка колеса мыши

Клавиша «F» – масштабирование и центрирование всей схемы

• Перемещение по полю

Нажать колесо мыши, перемещаться по полю

Нажать на значок *«Toggle Pan»* в поле инструментов и, зажав <u>левую</u> кнопку мыши, перемещаться по полю

- «Num2» перемещение по рабочей области вниз
- «Num4» перемещение по рабочей области влево
- «Num6» перемещение по рабочей области вправо
- «Num8» перемещение по рабочей области вверх
- Отмена действия
 - Сочетаний клавиш «Ctrl» и «Z»

Нажать на значок «Undo» в поле инструментов

5) Собрать конечную схему, замыкая нужные ключи и выставляя необходимые параметры. Чтобы замкнуть ключ следует нажать на один из контактов ключа <u>левой</u> кнопкой мыши, а затем на другой контакт ключа <u>правой</u> кнопкой мыши. Чтобы установить параметр необходимо нажать клавишу Ctrl и <u>левой</u> кнопкой мыши выделить данный параметр.

CONTROL1=C1

Рисунок 5. Пример выделенного параметра

После того как параметр выделен, отпустите клавишу Ctrl и дважды нажмите <u>левой</u> кнопкой мыши по параметру. Введите необходимый параметр и нажмите клавишу Enter.

Рисунок 6. Графическое изображение ключа

Ключ с управляющим сигналом

Если на управляющий вход «man» подается лог. «1», то ключ замкнут, в ином случае – разомкнут.

Рисунок 7. Графическое изображение ключа с управляющим сигналом

Мультиплексор 2:1

Блок, в котором сигналы, поступающие на входы x0 и x1, передаются на выход в зависимости от управляющего сигнала CTRL:

При замыкании ключа CTRL на выход передается сигнал LT3 (вход х1);

При размыкании ключа CTRL на выход передается сигнал C4 (вход х0).

Рисунок 8. Графическое изображение элемента «мультиплексор 2:1»

LUT 4:1 (2 input Look-Up Tables)

Блок LUT 4:1 содержит четыре входа (00, 01, 10, 11), выход LT3 и два управляющих сигнала C4, C5. Блок передает сигнал с одного из входов на выход LT3. Рядом с блоком в схеме реализована таблица истинности (Рисунок 9б). При замыкании ключей на входах, таблица истинности изменяется таким образом, что в соответствующем поле столбца LT3 устанавливается «1».

а) графическое изображение

б) таблица истинности

Рисунок 9. Элемент LUT 4:1

LUT 8:1 (3 input Look-Up Tables)

Блок LUT 8:1 содержит восемь входов (000, 001, 010, 011, 100, 101, 110, 111), выход LT1 и три управляющих сигнала C1, C2, C3. Блок передает сигнал с одного из входов на выход LT1. Рядом с блоком в схеме реализована таблица истинности (Рисунок 10б). При замыкании ключей на входах, таблица истинности изменяется таким образом, что в соответствующем поле столбца LT1 устанавливается «1».

а) графическое изображение

C3	C2	C1	LT1
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

б) таблица истинности

Рисунок 10. Элемент LUT 8:1

Логический элемент AND 2:1

а	b	Выход
0	0	0
0	1	0
1	0	0
1	1	1

а) графическое изображение

б) таблица истинности

Рисунок 11. Элемент AND 2:1

Логический элемент – инвертор

а) графическое изображение

Рисунок 12. Элемент инвертор

C1

0

0

1

1

Элемент – логическая функция

а) графическое изображение б) табл Рисунок 13. Элемент логическая функция

RES

C8 Рисунок 14. Графическое отображение

элемента D-триггер

C3C2C1

000 – DS1D1

001 – DS1D2

010 – DS1D3

011 – DS1D4

100 – DS1D5

101 – DS1D6

110 – DS1D7

111 – DS1D8

DT1

Элемент задержка

Вход

0

1

б) таблица истинности

б) таблица истинности

M1

0

0

0

1

C2

0

1

0

1

Величина задержки – 200 нс.

Рисунок 15. Графическое отображение элемента «Задержка».

Дешифратор 3:8

Элемент D-триггер

C1—□

Блок содержит три управляющих входа C1, C2, C3, сигнал Enable (En) и 8 выходов DS1D1 – DS1D8.

Блок передает значение сигнала En на выходы DS1D1...DS1D8 в зависимости от управляющих сигналов C1, C2, C3.

En

C1 – a0

C2 -a1

C3 – a2

C3 C2 C1 Выход 0 0 DS1D1 0 0 0 1 DS1D2 0 1 0 DS1D3 1 0 1 DS1D4 1 0 0 DS1D5 1 1 0 DS1D6 1 1 0 DS1D7 1 1 1 DS1D8

б) таблица истинности

Рисунок 16. Элемент дешифратор 3:8

Выход

1

0

nM1

0

1

0

0

Моделирование электрической схемы

Подготовка к моделированию

Источники напряжения расположены в библиотеке *symbol*. Чтобы перенести блоки в рабочее пространство нажмите <u>левой</u> кнопкой мыши на нужный блок и, не отпуская кнопку, перетащите в рабочее пространство.

Для управляющих сигналов (C1...C8) рекомендуется использовать источник прямоугольного сигнала (vpulse), для входных сигналов – источник постоянного напряжения (vsource), источник синусоидальных импульсов (vsin) и источник прямоугольного сигнала (vpulse).

- 1) Установить параметры источников напряжения.
- 2) Соединить вывод источника напряжения с соответствующим входом схемы.

Блоки внешних воздействий

vpulse – источник прямоугольных импульсов

Рисунок 17. Графическое отображение элемента vpulse

V1 – значение напряжения нижнего уровня	TD – время задержки
V2 – значение напряжения верхнего уровня	TR – время фронта
PW – ширина импульса	TF – время среза
РЕR – период	

vpwl – источник напряжения, задаваемый по точкам

Рисунок 18. Графическое отображение элемента vpwl

VAL = T1 V1 T2 V2 T3 ...

Т1 – время Т1	Т2 – время Т2
V1 – значение напряжения в точке T1	V2 – значение напряжения в точке T2

vsin - источник синусоидальных импульсов

Рисунок 19. Графическое отображение элемента vsin

VO – напряжение смещения	FREQ – частота
VA – амплитуда	TD – время задержки
ТНЕТА – коэффициент затухания	

vsource - источник постоянного напряжения

VAL – значение постоянного напряжения

Для установки параметров источников напряжения необходимо дважды нажать на параметр <u>левой</u> кнопкой мыши и вписать значение. Значения параметра вводится без указания единиц измерения. Чтобы ввести десятичную приставку, используются следующие обозначения:

фемто – f	нано – n	милли – m	мега – Мед
пико – р	микро – и	кило – К	гига – G

3) Задать параметры моделирования.

Для указания параметров моделирования необходимо перенести из библиотеки *symbol* блок *«5400TP055A_008_core»*. Чтобы перенести блок в рабочее пространство, нажмите <u>левой</u> кнопкой мыши на нужный блок и, не отпуская кнопку, перетащите в рабочее пространство.

tstep – шаг моделирования;

tstop - время моделирования;

rshunt – значение сопротивления резистора, добавленного между каждым выводом и «землей» для улучшения сходимости расчетов;

SAVE – опция ngspice, которая обеспечивает сохранение только написанных цепей в процессе моделирования.

Используется для уменьшения размера файла с результатами моделирования. Для стандартного моделирования поле требуется оставить пустым.

Опция SAVE=all позволяет сохранить все внутренние и внешние цепи. Более подробную информацию можно посмотреть в <u>ngspice manual</u> «15.6.1. SAVE: Name vector(s) to be saved in raw file». Пример использования: «SAVE=inp inm out».

Рисунок 21. Параметры моделирования по времени 4) Обозначить выводы, которые необходимо контролировать (IN, OUT и т.д.).

Для обозначения вывода необходимо зайти в его свойства (клавиша *«q»* или двойное нажатие <u>левой</u> кнопкой мыши по проводу) и в поле *«Name»* ввести название.

Рисунок 22. Обозначение выводов после построения схемы

- 5) Сохранить проект (File -> Save Library)
- 6) Запустить моделирование

Tools -> Simulation (Spice) -> Simulate (кнопка > на панели инструментов)

7) После завершения процесса моделирования откроется окно LTSpice IV.

Для вывода результатов на экран выбрать пункт *Plot Settings –> Add trace* и в появившемся окне указать нужные выводы (IN, OUT, C1, C2 и т.д.). Выбор проводника осуществляется при помощи поисковой строки *«Only list traces matching»*, где вводятся названия выводов. Например, если необходимо посмотреть сигнал на выходе схемы, то в поисковой строке необходимо ввести *out* и нужный проводник будет обозначаться как *«v(out)»*.

Add Traces to Plot		×
Available data:	Only list traces matching out Asterisks match colons	OK Cancel
I(b.xcau_comp@0.b.xcau_ i(b.xoutput_a@4.b.xcau_m i(b.xoutput_a@4.b.xcau_m i(b.xpau@0.b.xcau_macr@ i(v.xoutput_a@4.vvpulse@ v[output_a@4_output] v[xcau_comp@0.xcau_mac v[xoutput_a@4.xcau_mac v[xoutput_a@4.xcau_macr@4.v	macr@3.bvcvsout) iacr@1.bvcvsout) 94.bvcvsout) 91) acr@3.cascout1) r@1.bia) r@1.cascout1) cascout1)	
Expression(s) to add:		
AutoBange		

Рисунок 23. Окно вывода результатов моделирования

В тестовом проекте реализован мультиплексор 8:1:

С1, С2, С3 – управляющие сигналы;

С4 – сигнал Enable (при С4 = «0» все ключи закрыты);

IN1...IN8 – входы мультиплексора;

OUT – выход мультиплексора (выводы OUT1...OUT8 объединены).

Временная диаграмма моделирования представлена ниже (Рисунок 24).

Рисунок 24. Результат моделирования тестового проекта

Инструменты программы моделирования LTspice IV:

Увеличение области – нажать <u>левую</u> кнопку мыши, и не отпуская, выделить интересующую область.

Возврат масштаба к начальному – нажать кнопку «Zoom full extents» в панели инструментов.

Добавление координатной плоскости: Plot Settings -> Add Plot Pane.

Вывод маркеров – нажать <u>левой</u> кнопкой мыши по названию проводника.

Удаление маркера – нажать клавишу «Delete» и <u>левой</u> кнопкой мыши выбрать название проводника.

Создание конфигурационной последовательности

8) Для создания конфигурационной последовательности необходимо нажать кнопку *1* на панели инструментов

После создания конфигурационной последовательности замкнутые ключи появятся в файле конфигурационной последовательности analog_config.txt.

Путь к файлу .\DCSElectric\config\analog_config.txt.

Лист регистрации изменений

Дата	Версия	Изменения
17.02.2020	1.0	Исходная версия
31.07.2020	1.1	Обновлен пункт «Создание конфигурационной последовательности» Обновлен пункт «Основные блоки схемы»: – обновлен рисунок 6 б.
12.05.2021	1.2	Изменено описание блока « <i>5400TP055A_008_core</i> »: – обновлен рисунок 21.