

Версия 1.3

5400ТР055А-008 (ПИКЛ)

Приложение Б

Руководство пользователя по программированию интегрального ключа 5400ТР055А-008

Состав отладочного комплекта КФЦС.441461.074 для микросхемы 5400ТР055А-008:

- Программатор КФЦС.441461.097;
- Отладочная плата (КФЦС.441461.061, КФЦС.758725.155);
- USB-кабель для подключения программатора к ПК;
- Шлейф для подключения программатора;
- ПО для проектирования и моделирования электрических схем DCS_Electric;
- ПО для программирования микросхемы DCSProg-3.

Предварительная настройка отладочной платы

- 1. Собрать отладочный комплект:
 - Подсоедините USB кабель к программатору и ПК. При подключении к ПК на программаторе загорается зеленый светодиод;
 - о Подсоедините шлейф к программатору и отладочной плате;
 - Убедитесь, что подключили шлейф правильно. Для корректного подключения программатора к отладочной плате следует первый вывод шлейфа (обозначен красным цветом) подключить к первому выводу на отладочной плате согласно рисунку шелкографии (Рисунок 2 – «Г»).
- 2. Зайдите в диспетчер устройств;

Для Windows 10 – нажмите по иконке поиска в панели задач и наберите «диспетчер устройств» в поле ввода, а после того, как нужный элемент будет найден, нажмите по нему мышкой для открытия. Для Windows 7 и 8 – откройте пуск и введите в поле поиска фразу «диспетчер устройств», а после того, как нужный элемент будет найден, нажмите по нему мышкой для открытия.

Во вкладке «Порты (COM и LPT)» можно посмотреть какой COM-порт соответствует программатору DCSProg-3 (Рисунок 1).

🛃 Диспетчер устройств	-		×
<u>Ф</u> айл <u>Д</u> ействие <u>В</u> ид <u>С</u> правка			
			_
> 🖣 Аудиовходы и аудиовыходы			^
» ще видеоадаптеры			
Встроенное ПО			
За дисковые устроиства			
 Звуковые, игровые и видеоустроиства Казана в строитела 			
> 👻 Камеры			
Компоненты программного обеспечения			
Ф Контроллеры USB			
жа контролеры запоминающих устроиств			
Silicon Labs (P210) USB to LIAPT Bridge (COM3)			
> То системные устройства			
V III VICTONICE SUPPORTE			~

Рисунок 1. Диспетчер устройств

Если компьютер не распознает программатор, то следует установить драйвер CP210x. (https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).

3. Подайте питание на плату +15 В и –15 В. Установите ограничение по току 300 мА (Рисунок 2 – «А»). Ток потребления отладочного комплекта без микросхемы ~42,0 мА;

Рисунок 2. Отладочная плата КФЦС.441461.061

таолица т. Осозначение выводов на отладочнои плат	Таблица	1. Обозначение	выводов на	отладочной	плате
---	---------	----------------	------------	------------	-------

A – выводы для подачи питания ±15 В;	Д – потенциометр для настройки питания программатора +11 В;
Б – общий вывод;	Е – джампер для установки питания программатора;
В – светодиод для контроля питания программатора +11 В;	Ж – первый вывод микросхемы;
 Г – разъем для подключения шлейфа программатора; 	И – выводы для установки напряжения лог. «1» и лог. «0» на выводах C1 – C8 с помощью джамперов.

4. С помощью потенциометра «Д» настройте таким образом, чтобы на выводе «Е» было напряжение 11 В и установите джампер на выводы «Е»;

5. Предварительная настройка платы завершена. Отключите подачу напряжения на отладочную плату.

Важно! Если необходимо отключить программатор после программирования, то следует сначала отключить шлейф от отладочной платы, затем отключить USB.

Программирование микросхемы

1. Вставьте микросхему в спутник-носитель (Рисунок 3);

2. Установите спутник-носитель вместе с микросхемой в контактирующее устройство и прижмите его крышкой контактирующего устройства (Рисунок 4);

Рисунок 3. Расположение микросхемы в спутнике-носителе

Рисунок 4. Расположение спутника-носителя в контактирующем устройстве

- 3. Подайте питание на плату ±15 В (Рисунок 2 «А»). Установите ограничение по току 300 мА;
- 4. Запустить приложение DCSProg-3.exe;

Внешний вид программы представлен на рисунке 5. При подаче питания на плату происходит автоматическая идентификация отладочной платы в правом нижнем углу.

Рисунок 5. Внешний вид программы DCSProg-3

5. Если у вас подключено больше одного СОМ-порта к компьютеру, то вы увидите диалоговое окно с выбором СОМ-порта (Рисунок 6).

OCSProg-3	_	\times
Микросхема Настройка Помощь		
🧿 Messa ? 🗙		
Choose required COM port:		
СОМЗ		
OK Cancel		

Рисунок 6. Диалоговое окно выбора СОМ-порта

6. В диалоговом окне выберите COM-порт, который соответствует программатору DCSProg-3 (Рисунок 7) и нажмите «OK». COM-порт, который соответствует программатору DCSProg-3 можно посмотреть в «диспетчере устройств» (Рисунок 1). Далее должна произойти автоматическая идентификация платы в правом нижнем углу программы (Рисунок 5).

Рисунок 7. Выбор СОМ-порта в DCSProg-3

7. После идентификации нажмите «*Микросхема – Загрузить файл»*, выберите файл с прошивкой *analog_config.txt* (Расположение файла по умолчанию: ...*DCSElectric**config*) и нажмите кнопку «*Открыть»* (Рисунок 8).

♦ config				
← → 👻 ↑ 📜 « Window	ws (C:) > DCSElectric > config	ٽ ~	🔎 Поиск: config	
Упорядочить 🔻 Новая па	пка			. ?
	Мя	Дата изменения	Тип	Размер
Рабоший стор	🧉 analog_config.txt	23.07.2020 14:32	Файл "ТХТ"	1
	🧉 config.txt	15.06.2020 14:50	Файл "ТХТ"	0
 Загрузки Документы 	digital_config.txt	15.06.2020 14:51	Файл "ТХТ"	1
📧 Изображени 🖈				
🧎 config				
loader8051T5				
MKProg				
PIKL_PAMS_prog				
OneDrive				
🗢 Этот компьютер \vee <				>
<u>И</u> мя файла:	analog_config.txt	~	Configuration Files (*.txt)	~
			<u>О</u> ткрыть Отм	ена

Рисунок 8. Расположение текстового файла

8. Введенные номера отобразятся на экране (Рисунок 9).

OCSProg-3		_		×
<u>М</u> икросхема <u>Н</u> астройка <u>П</u> омощь				
Orun in the To DOSE least is least is least in the	2 8 14 20 26 22 28 44			
Открыт фаил /C:/DCSElectric/conlig/analog_conlig.txt	2 8 14 20 26 32 38 44			
		5400TP0	55A-008 (П	икл)

Рисунок 9. Содержание текстового файла

Обязательно обратите внимание на правильность введенных данных. Микросхема 5400ТР055А-008 (ПИКЛ) является однократно программируемой!

9. После проверки нажмите «*Микросхема – Прожечь*». В открывшемся окне подтвердите программирование микросхемы – кнопка «*Yes*» (Рисунок 10).

OCSProg-3	_		\times
Микросхема Настройка Помощь			
Открыт файл /C:/DCSElectric/config/analog_config.txt 2 8 14 20 26 32 38 44			
🧿 Прожиг микросхемы 🗙			
? Вы уверены?			
Yes No			
	5400TP05	5А-008 (ПІ	икл) 🛛

Рисунок 10. Подтверждение программирования микросхемы

10.После завершения программирования микросхемы программа выдаст сообщение «*Микросхема* ПИКЛ запрограммирована» (Рисунок 11).

Рисунок 11. Окно окончания программирования

При программировании в режиме HARD светодиод моргает зелено-красным. После программирования микросхемы в HARD светодиод горит фиолетовым цветом. При отключении программатора и повторном подключении светодиод горит зеленым независимо запрограммирована микросхема или нет.

Программирование микросхемы без отладочного комплекта

Программирование микросхемы осуществляется путем подачи комбинации на выводы С1 ... С6 и сигналов управления на выводы С7, С8.

Выводы С1 ... С6 предназначены для выбора адреса ячеек памяти, где:

- о комбинация C6 C1=000000 соответствует нулевой ячейке памяти;
- о комбинация C6 C1=000001 соответствует первой ячейке и т.д.

Вывод С7 – сигнал разрешения для записи данных в память (EN). Вывод С8 – сигнал блокировки записи данных в память (STOP). Напряжение логической «1», подаваемой на С1 ... С8, составляет от 1,8 В до VDDA.

Для прожига комбинации в память необходимо:

- 1) подать напряжение питания VDDA = +15 B, VSSA = -15 B, VSS = 0 B;
- 2) выставить необходимый адрес ячейки с помощью выводов С1 С6;
- 3) подать на вывод VDD напряжение 5,0 В с ограничением по току не менее чем 300 мА;
- 4) подать на С7 напряжение логической «1» длительностью 100 мс;
- 5) отключить напряжение на выводе С7;
- 6) отключить напряжение 5,0 В на выводе VDD;
- 7) Повторить пункты 2-6 для остальных ячеек памяти.

После записи всех нужных данных в память:

- 1) подать на выводы C1 C6 напряжение логической «1»;
- 2) подать на вывод VDD напряжение 5,0 В с ограничением по току не менее чем 300 мА;
- 3) подать на С7 и С8 напряжение логической «1» длительностью 100 мс;
- 4) отключить напряжение на выводах С7 и С8;
- 5) отключить напряжение 5,0 В на выводе VDD;

Прожигание первой ячейки памяти и STOP-бита (сигнал C8) представлены на временной диаграмме (Рисунок 12).

Важно! Доступ к памяти, после подачи сигнала на C8, становится невозможным и выводы C1 – C8 становятся управляющими сигналами цифровой части.

Рисунок 12. Временная диаграмма записи данных

Электрическая схема отладочной платы и назначение выводов шлейфа

Таблица 2. Таблица внешних компонентов

Рисунок 13. Электрическая схема отладочной платы и назначение выводов шлейфа

- С1-С8 вход цифрового управления;
- +11 В вывод питания программатора;
- VDD вывод программирования.

Топология отладочной платы

Рисунок 14. Топология отладочной платы (верхний слой)

Лист регистрации изменений

Дата	Версия	Изменения
07.08.2020	1.0	Исходная версия
25.02.2020	1.1	Обновлен пункт «Предварительная настройка отладочной платы»: – обновлены рисунки 1, 2. Обновлен пункт «Программирование микросхемы»: – обновлены рисунки 3, 4; – добавлены рисунки 6, 7; – изменено описание. Обновлен пункт «Программирование без отладочного комплекта»: – изменено описание; – изменен рисунок 10. Добавлен пункт «Рекомендуемая схема применения»: – добавлен рисунок 13. Добавлен пункт «Назначение выводов шлейфа»: – добавлен рисунок 14.
05.05.2021	1.2	Обновлен пункт «Предварительная настройка отладочной платы»: – обновлен рисунок 2; – обновлено описание. Удален пункт «Рекомендуемая схема применения»; Удален пункт «Назначение выводов шлейфа»; Добавлен пункт «Электрическая схема отладочной платы и назначение выводов шлейфа»: – добавлен рисунок 13; – добавлена таблица 1.
16.06.2021	1.3	Добавлено описание работы светодиода на программаторе при разных режимах работы с микросхемой