Интегральный цифровой датчик температуры с I2C интерфейсом управления и функцией компаратора

Версия 1.0

К5306НТ04ВУ / К5306НТ04ВТ

Основные особенности

- Точность измерения температуры 0,5°C;
- I2С интерфейс;
- 3 адресных вывода;
- Время преобразования 200 мс;
- Диапазон напряжения питания 3,3 В ... 5,0 В;
- Ток потребления 150 мкА;
- Температурный диапазон от –45°С до +85°С.

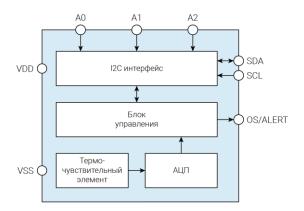


Рисунок 1. Структурная схема

Общее описание

Интегральный температурный датчик K5306HT04BУ/K5306HT04BT предназначен для преобразования значения температуры в цифровой код. Взаимодействие управляющего микроконтроллера с микросхемой осуществляется по I2C интерфейсу.

Дополнительно в микросхеме реализован температурный компаратор. Программирование значения температурных порогов срабатывания (T_H и T_L) и полярности (POL) осуществляется пользователем. Тип выхода компаратора — открытый сток.

В микросхеме реализовано 3 адресных вывода (А2, А1, А0), возможно применение до 8 микросхем на линии.

Микросхемы K5306HT04BУ и K5306HT04BT – функциональный аналог ADT75 (Analog Devices).

Рисунок 2. Внешний вид микросхемы К5306HT04BУ

Рисунок 3. Внешний вид микросхемы K5306HT04BT

ГГ – год выпуска НН – неделя выпуска

Микросхемы К5306HT04BУ и К5306HT04BT имеют в своей основе один кристалл и отличаются только типом корпуса:

- K5306HT04BУ выполнена в 8-ти выводном металлополимерном корпусе 5241.8-1H3 К (mDFN8);
- K5306HT04BT выполнена в 8-ми выводном металлополимерном корпусе 4303.8-DH3 К (SOIC-8).

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Электрические параметры микросхемы

Таблица 1. Электрические характеристики (температурный диапазон от –45°C до +85°C)

Попомоть опишина изменения	Норма параметра			
Параметр, единица измерения	не менее	типовое	не более	
Точность измерения температуры, °С	-2,5	±0,5	+2,5	
Ток потребления, мкА		150	300	
Напряжение низкого уровня цифровых сигналов (SDA), В		0	0,5	
Время преобразования tпреоб, мс	100	200	300	

Электростатическая защита

Микросхема имеет встроенную защиту от электростатического разряда до 1000 В по модели человеческого тела. Требует мер предосторожности.

Режимы эксплуатации

Таблица 2. Предельно-допустимые и предельные режимы эксплуатации

Параметр, единица измерения	-	допустимый ким	Предельн	ный режим
	не менее	не более	не менее	не более
Напряжение питания (VDD), В	3,0	5,5	-0,3	5,6
Входное напряжение высокого уровня цифровых сигналов (A2, A1, A0, SCL, SDA), В	VDD-0,7	VDD+0,3 ⁽¹⁾	-0,3	VDD+0,5 ⁽²⁾
Входное напряжение низкого уровня цифровых сигналов (A2, A1, A0, SCL, SDA), В	0	0,5	-0,3	VDD+0,5 ⁽²⁾
Нагрузочная способность (SCL, SDA), мА	_	1,5	_	3,0
Температура эксплуатации, °С	– 45	+85	-60	+100

Примечание:

1) не более 5,5 В

2) не более 5,6 В

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Конфигурация и функциональное описание выводов

Таблица 3. Функциональное описание выводов

№ вывода	Тип вывода	Наименование вывода	Назначение вывода	
1	DI/DO	SDA	Информационный вход/выход (тип выхода – открытый сток)	
2	DI	SCL	Вход тактовой частоты	
3	DO	OS/ALERT	Выход компаратора (тип выхода – открытый сток)	
4	PWR	VSS	Вывод отрицательного напряжения питания, общий вывод	
5	DI	A2	Адресный вход 2	
6	DI	A1	Адресный вход 1	
7	DI	A0	Адресный вход 0	
8	PWR	VDD	Вывод положительного напряжения питания	

Примечание:

DI – цифровой вход

DO – цифровой выход

PWR - вывод напряжения питания

Эквивалентные схемы

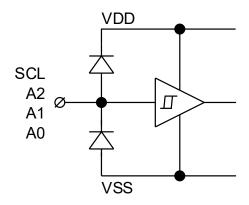


Рисунок 4. Цифровой вход SCL, A2, A1, A0

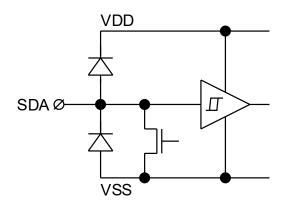


Рисунок 5. Цифровой вход/выход SDA

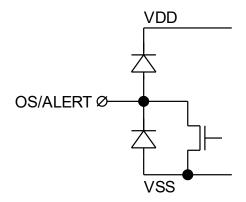


Рисунок 6. Цифровой выход OS/ALERT

Рекомендуемая схема применения

Таблица 4. Таблица внешних компонентов

Компонент	Номинал
R1, R2, R3	4,7 кОм

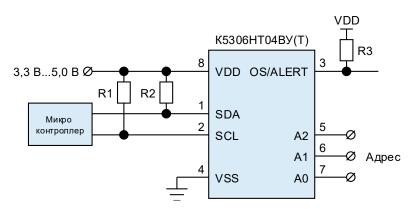


Рисунок 7. Рекомендуемая схема применения

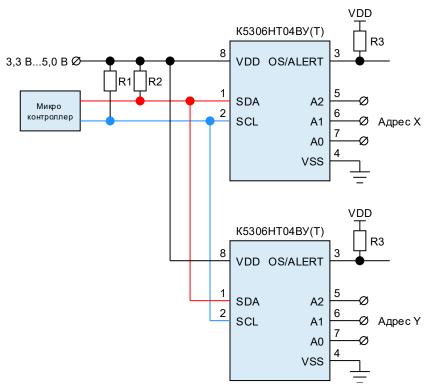


Рисунок 8. Рекомендуемая схема применения нескольких микросхем на линии

Примечание:

Возможно применение до 8 микросхем на линии.

Объединение микросхем с одинаковым адресом недопустимо.

Если температурный компаратор не используется, вывод OS/ALERT оставить в обрыве.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Описание функционирования микросхемы

Взаимодействие управляющего устройства с микросхемой осуществляется через низкоскоростной двунаправленный двухпроводной интерфейс I2C.

Микросхемы К5306HT04BУ, К5306HT04BT – ведомое устройство (slave).

Первый пакет данных пересылается от ведущего устройства (*master*) к ведомому (*slave*), это физический адрес устройства и бит на чтение/запись. Обращение ведущего начинается установки уровня лог. «0» на выводе SDA, это является стартовым сигналом для ведомых устройств. Установка уровня лог. «1» SDA при высоком тактовой сигнале является для ведомых стоп-командой.

Рисунок 9. Структура передачи пакета данных от master

Адрес состоит из семи бит, в микросхеме предусмотрено три внешних вывода (A2, A1, A0) для адресации.

Таблица 5. Таблица адресов микросхемы

ADR6 ADR5	ADD4	VDB3	ADD2	22 ADD1	ADR0	Внешний вывод		
ADRO	ADN4	ADKS	ADRZ	ADKI		A2	A1	A0
0	0	1	0	0	0	0	0	0
0	0	1	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	0	1	0	1	1	0	1	1
0	0	1	1	0	0	1	0	0
0	0	1	1	0	1	1	0	1
0	0	1	1	1	0	1	1	0
0	0	1	1	1	1	1	1	1
	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1	0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1	ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1	ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 A2 A1 0

^{1 –} высокий логический уровень

Восьмой бит (R/W) – бит чтения/записи:

если R/W – лог. «0», то осуществляется команда на запись, микросхема K5306HT04Bx принимает данные;

если R/W – лог. «1», то осуществляется чтение, микросхема K5306HT04Bx передает данные.

Девятым битом идет бит подтверждения приема информации (*ACK/NACK*). Если *slave* принял и считал свой адрес, то на девятом такте он установит на выводе SDA лог. «0», сгенерировав *ACK*.

После идут пакеты с данными к slave или к master, в зависимости от бита R/W в первом пакете.

Обращаем внимание, документация носит ознакомительный характер.

При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

^{0 -} низкий логический уровень

Команды доступные для микросхемы

Команда «Запись указателя»

Назначение команды:

запись указателя для последующего обращения к регистрам микросхемы.

Структура команды для записи указателя (Рисунок 10):

Первый пакет – адрес микросхемы (Таблица 5) и бит на запись (бит R/W – лог. «0»);

Второй пакет – 8-битный указатель.

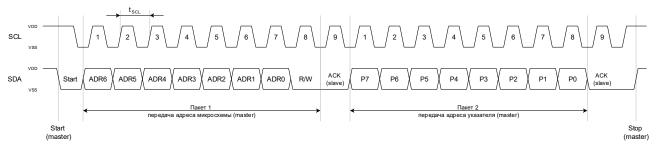


Рисунок 10. Временная диаграмма команды «Запись указателя»

Таблица 6. Справочные данные к временным диаграммам (Рисунок 10 – Рисунок 14, Рисунок 18)

Попомотр опишина измерения	Норма параметра			
Параметр, единица измерения	не менее	типовое	не более	
Период тактового сигнала (t _{SCL}), мкс	2,5	10		
Коэффициент заполнения тактового сигнала, %	40	50	60	
Входное напряжение высокого уровня цифровых сигналов (SCL, SDA), В	VDD-0,7	VDD		
Входное напряжение низкого уровня цифровых сигналов (SCL, SDA), В		0	0,5	
Выходное напряжение низкого уровня цифровых сигналов (SDA), В		0	0,5	

Таблица 7. Адреса указателей

P7P0	Доступ	Назначение
0000 0000 (<i>00h</i>)	R	указатель для чтения температурного кода в непрерывном режиме
0000 0001 (<i>01h</i>)	R/W	указатель для чтения/записи конфигурационного регистра
0000 0010 (<i>02h</i>)	R/W	указатель для чтения/записи нижнего порога компаратора
0000 0011 (<i>03h</i>)	R/W	указатель для чтения/записи верхнего порога компаратора
0000 0100 (<i>04h</i>)	R/W	указатель для одиночного запуска преобразования температуры в режиме по запросу и чтения результатов преобразования

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Команда «Запись данных»

Назначение команды:

- 1) запись конфигурационного регистра (1 Байт);
- 2) запись нижнего порога срабатывания компаратора (2 Байт);
- 3) запись верхнего порога срабатывания компаратора (2 Байт).

Структура команды для записи 1 Байт (Рисунок 11):

Первый пакет – адрес микросхемы (Таблица 5) и бит на запись (бит R/W – лог. «0»);

Второй пакет – 8-битный указатель (01h);

Третий пакет – данные конфигурационного регистра.

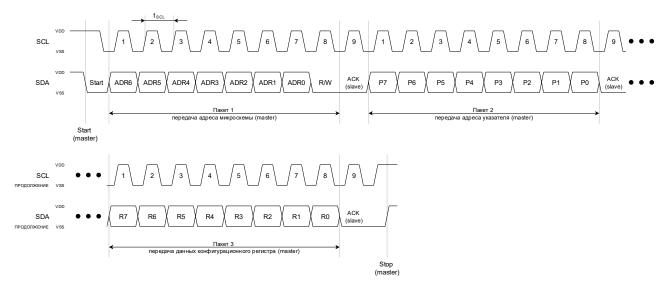


Рисунок 11. Временная диаграмма команды «Запись данных» для 1 Байт

Назначение битов R7 ... R0 приведено в разделе «Конфигурационный регистр».

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Структура команды для записи 2 Байт (Рисунок 12):

Первый пакет – адрес микросхемы (Таблица 5) и бит на запись (бит R/W – лог. «0»);

Второй пакет – 8-битный указатель (*02h или 03h*);

Третий пакет – старший байт нижнего порога срабатывания компаратора / старший байт верхнего порога срабатывания компаратора;

Четвертый пакет – младший байт нижнего порога срабатывания компаратора / младший байт верхнего порога срабатывания компаратора.

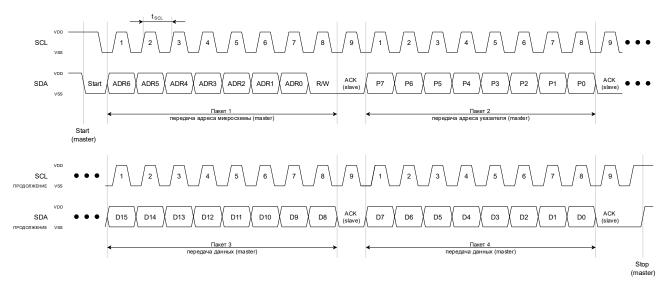


Рисунок 12. Временная диаграмма команды «Запись данных» для 2 Байт

Назначение битов D15 ... D0 приведено в разделе «Преобразование температуры».

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Команда «Чтение данных»

Назначение команды:

- 1) чтение конфигурационного регистра (1 Байт);
- 2) чтение нижнего порога срабатывания компаратора (2 Байт);
- 3) чтение верхнего порога срабатывания компаратора (2 Байт);
- 4) чтение преобразованной температуры (2 Байт).

Структура команды для чтения 1 Байт (Рисунок 13):

Первый пакет – адрес микросхемы (Таблица 5) и бит на чтение (бит R/W – лог. «1»);

Второй пакет – данные конфигурационного регистра (при указателе 01h).

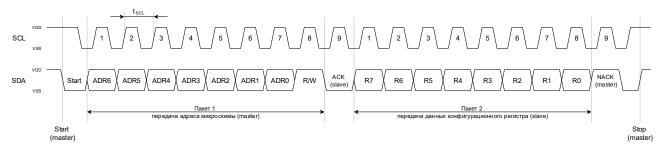


Рисунок 13. Временная диаграмма команды «Чтение данных» для 1 Байт

Назначение битов R7 ... R0 приведено в разделе «Конфигурационный регистр».

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Структура команды для чтения 2 Байт (Рисунок 14):

Первый пакет – адрес микросхемы (Таблица 5) и бит на чтение (бит R/W – лог. «1»);

Второй пакет – старший Байт регистра (*при указателях 00h или 02h или 03h или 04h*);

Третий пакет – младший Байт регистра (при указателях 00h или 02h или 03h или 04h).

Рисунок 14. Временная диаграмма команды «Чтение данных» для 2 Байт

Назначение битов D15 ... D0 приведено в разделе «Преобразование температуры».

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Преобразование температуры

При чтении/записи температурных регистров (*указатели 00h или 02h или 03h или 04h*) данные имеют вид, приведенный в таблице ниже (Таблица 8).

Таблица 8. Данные температурных регистров

D15	D14	D13	D12	D11	D10	D9	D8
S	D	D	D	D	D	D	D
D7	D6	D5	D4	D3	D2	D1	D0
D	D	D	D	_	_	=	=

S – знаковый бит:

«1» – температура отрицательная;

«0» – температура положительная.

D – значащий бит:

D14 - старший;

D4 - младший.

Соответствие бинарного кода и температуры в °С приведено в таблице ниже (Таблица 9).

Таблица 9. Таблица соответствия бинарного кода и температуры в °C

Температура, °С	Данные D15D4 (BIN)	Данные D15D4 (HEX)
+85	0101 0101 0000	550h
+25,0625	0001 1001 0001	191h
+10,125	0000 1010 0010	0A2h
0	0000 0000 0000	000h
-10,125	1111 0101 1110	F5Eh
-25,0625	1110 0110 1111	E6Fh
-45	1101 0011 0000	D30h

Для преобразования положительной температуры (D15 = «0», Таблица 8) в градусы Цельсия необходимо выходные данные перевести из двоичного числа в десятичное и умножить на коэффициент 0,0625.

Для преобразования отрицательной температуры (D15 = «1», Таблица 8) в градусы Цельсия необходимо выходные данные инвертировать, полученное двоичное число перевести в десятичное, прибавить 1 и умножить на коэффициент 0,0625.

После выхода температуры за рамки предельно-допустимого режима датчик продолжит выдавать код в соответствии с приведенной формулой. Например, для температуры +90°C выходной код 5A0h (0101 1010 0000), для температуры минус 50°C выходной код CE0h (1100 1110 0000).

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Конфигурационный регистр

Микросхема содержит 8-битный регистр конфигурации, после включения в регистре устанавливаются значения по умолчанию – лог. «0».

Таблица 10. Конфигурационный регистр

Биты	Название	Значение при сбросе	Описание
R7	OS/SMBus Alert Mode	0h	Функция оповещения SMBus Alert: «0» – отключение функции оповещения SMBus Alert; «1» – включение функции оповещения SMBus Alert.
R6	Critical	0h	Выход OS/ALERT учитывает только верхний порог: «0» – функция отключена; «1» – функция включена (в данном режиме рекомендуется включить параметр «Очередь ошибок» для устранения ложных срабатываний из-за температурного шума).
R5	One Shot	0h	Выбор режима работы: «0» — непрерывный режим (в данном режиме микросхема постоянно преобразует температуру, для чтения преобразованных данных необходимо записать указатель 00h); «1» — режим по запросу (в данном режиме преобразование температуры запускается однократно при записи указателя 04h).
R4, R3	Fault Queue	00h	Очередь ошибок. Определяет количество срабатываний, которые необходимо накопить для переключения выхода OS/ALERT. Помогает избежать ложных срабатываний из-за температурного шума. «00» – 1 срабатывание; «01» – 2 срабатывания; «10» – 4 срабатывания; «11» – 6 срабатываний.
R2	POL	0h	Выбор полярности вывода OS/ALERT: «0» – активный уровень «0»; «1» – активный уровень «1».
R1	CMP/INT	0h	Выбор режима работы вывода OS/ALERT: «0» – компаратор; «1» – прерывание.
R0	_	0h	_

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Режим измерения по запросу

Режим измерения температуры по запросу активируется установкой бита R5 = 1 конфигурационного регистра (Таблица 10).

После установки режима по запросу запуск процесса измерения температуры инициируется записью указателя *04h*.

Структура команды для записи указателя (Рисунок 10):

Первый пакет – адрес микросхемы (Таблица 5) и бит на запись (бит R/W – лог. «0»);

Второй пакет – 8-битный указатель (*04h*).

Чтение преобразованных данных доступно через время t_{ПРЕОБ} (Таблица 1) после записи указателя *04h* с помощью команды «Чтение данных» для 2 Байт (Рисунок 14).

Температурный компаратор

В микросхеме реализован интегральный температурный компаратор.

Вывод OS/ALERT переключается в зависимости от порогов срабатывания (верхний порог T_H , нижний порог T_L) и полярности (бит R2), тип выхода OS/ALERT — открытый сток.

Микросхема поддерживает два режима работы вывода OS/ALERT: режим компаратора (R1 = 0) и режим прерывания (R1 = 1). Выбор режима работы осуществляется с помощью конфигурационного регистра (Таблица 10).

При включении микросхемы значение нижнего порога компаратора (T_L) составляет +75°C (записано в регистре с указателем 02h), значение верхнего порога компаратора (T_H) составляет +80°C (записано в регистре с указателем 03h).

Установка требуемых пользователю порогов переключения компаратора осуществляется в соответствии с временной диаграммой команды «Запись данных» для 2 Байт (Рисунок 12).

Разность между порогами T_L и T_H должна составлять не менее 5,0°C.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Варианты работы вывода OS/ALERT в режиме по запросу

Режим компаратора (R1 = 0): вывод OS/ALERT переходит в активное состояние через время $t_{преоб}$ (Таблица 1) после записи указателя *04h* при превышении измеренной температуры значения порога $T_{H.}$ Вывод OS/ALERT переходит в неактивное состояние через время $t_{преоб}$ (Таблица 1) после записи указателя *04h* при снижении измеренной температуры ниже порога $T_{L.}$

Режим прерывания (R1 = 1): вывод OS/ALERT переходит в активное состояние через время $t_{\Pi PEO B}$ (Таблица 1) после записи указателя *04h* при превышении измеренной температуры значения порога T_{H} , и возвращается в неактивное состояние после чтения любого регистра. Вывод OS/ALERT снова вернется в активное состояние через время $t_{\Pi PEO B}$ (Таблица 1) после записи указателя *04h* только при снижении измеренной температуры ниже порога T_{L} . После чтения любого регистра вывод возвращается в неактивное состояние.

Временная диаграмма работы вывода OS/ALERT в режиме по запросу (R5 = 1) приведена ниже (Рисунок 15).

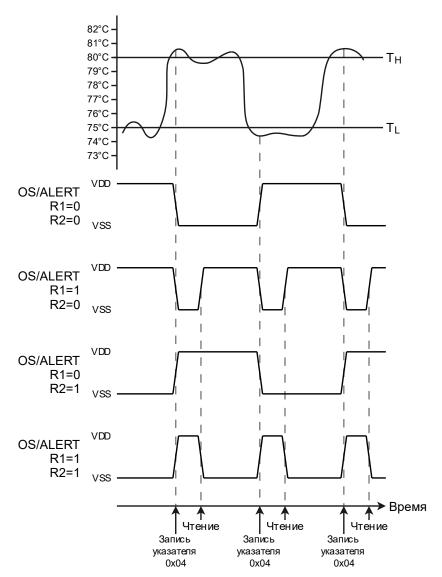


Рисунок 15. Временная диаграмма работы вывода OS/ALERT в режиме по запросу

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Варианты работы вывода OS/ALERT в непрерывном режиме

Режим компаратора (R1 = 0): вывод OS/ALERT переходит в активное состояние при превышении измеренной температуры значения порога T_H и возвращается в неактивное состояние при снижении измеренной температуры ниже порога T_L .

Режим прерывания (R1 = 1): вывод OS/ALERT переходит в активное состояние при превышении измеренной температуры значения порога T_H и возвращается в неактивное состояние после чтения любого регистра. Вывод OS/ALERT снова вернется в активное состояние только при снижении измеренной температуры ниже порога T_L . После чтения любого регистра вывод возвращается в неактивное состояние.

Временная диаграмма работы вывода OS/ALERT в непрерывном режиме (R5 = 0) приведена ниже (Рисунок 16).

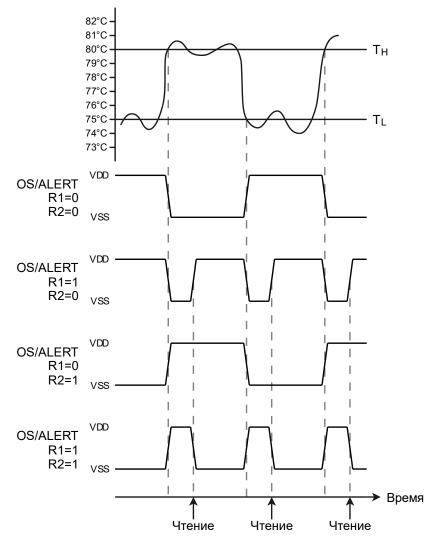


Рисунок 16. Временная диаграмма работы вывода OS/ALERT в непрерывном режиме

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Варианты работы вывода OS/ALERT в режиме Critical

В микросхеме реализован режим Critical (R6 = 1), который учитывает только верхний порог Тн.

Данную реализацию работы рекомендуется использовать в непрерывном режиме измерения температуры (R5 = 0) с включенным параметром «Очередь ошибок» (R3 = 1, R4 = 1).

Режим компаратора (R1 = 0): вывод OS/ALERT переходит в активное состояние при превышении измеренной температуры значения порога T_H и возвращается в неактивное состояние при снижении измеренной температуры ниже порога T_H .

Режим прерывания (R1 = 1): вывод OS/ALERT переходит в активное состояние при превышении измеренной температуры значения порога T_H и возвращается в неактивное состояние после чтения любого регистра. Вывод OS/ALERT снова вернется в активное состояние только при снижении измеренной температуры ниже порога T_H . После чтения любого регистра вывод возвращается в неактивное состояние.

Временная диаграмма работы вывода OS/ALERT в режиме Critical (R6 = 1) приведена ниже (Рисунок 17).

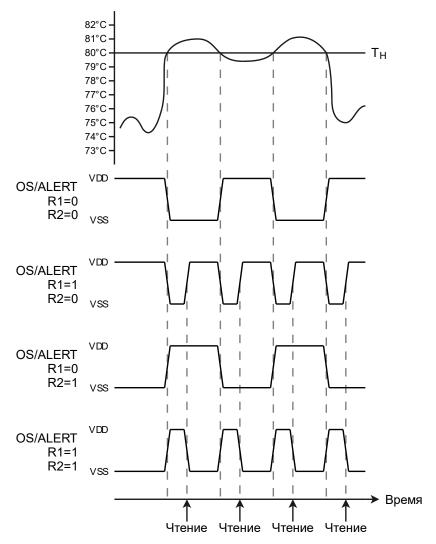


Рисунок 17. Временная диаграмма работы вывода OS/Alert в режиме Critical

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Режим SMBus Alert

Обычно ведомые устройства не могут самостоятельно начинать обмен данными, однако режим SMBus Alert позволяет устройствам уведомлять ведущий контроллер о необходимости передачи.

Для активации режима SMBus Alert необходимо:

- включить функцию оповещения SMBus Alert (R7 = 1);
- выбрать режим прерывания (R1 = 1);
- установить полярность вывода на активный низкий уровень (R2 = 0).

Тип вывода OS/ALERT – открытый сток, поэтому можно подключить несколько ведомых устройств по схеме «И»: линия перейдет в лог. «0», если хотя бы одно из устройств передаст на линию «0».

Структура режима SMBus Alert:

- 1. Линия переходит в лог. «0».
- 2. Первый пакет ведущий контроллер передает специальный адрес (ARA Alert Response Address 0001 100) и бит на чтение (бит R/W лог. «1»).
- 3. Второй пакет микросхемы, у которых вывод OS/ALERT в лог. «0», реагируют на запрос и передают свой адрес (7 бит) и младший бит (LSB), используемый для индикации: если LSB = 1, то измеренная температура превышает значения порога T_H , если LSB = 0, то измеренная температура ниже порога T_L .
- 4. Третий пакет микросхема передает 8-битную контрольную сумму, которая используется для проверки целостности данных при их передаче (CRC-8).
- 5. Если сразу у нескольких устройств вывод OS/ALERT в лог. «0», то преимущество имеет микросхема с наименьшим адресом.

Как только датчик ответил на ARA, он сбрасывает вывод OS/ALERT в «1». Если на линии по прежнему «0», мастер снова отправляет ARA, пока все микросхемы с OS/ALERT = «0» не отреагируют.

Временная диаграмма работы в режиме SMBus Alert приведена на рисунке ниже (Рисунок 18).

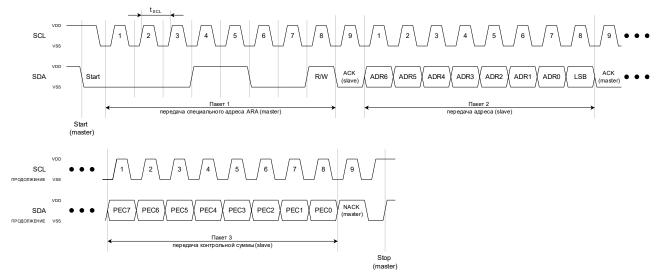


Рисунок 18. Временная диаграмма работы микросхемы в режиме SMBus Alert

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Габаритный чертеж

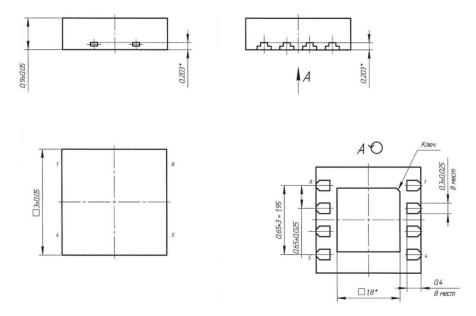


Рисунок 19. Габаритный чертеж корпуса 5241.8-1НЗ К (размеры в мм)

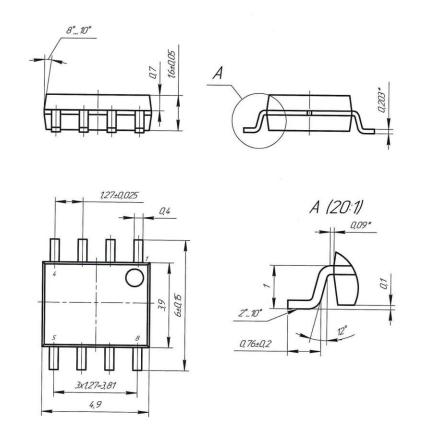


Рисунок 20. Габаритный чертеж корпуса 4303.8-DH3 К (размеры в мм)

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Информация для заказа

Обозначение	Маркировка	Корпус	Температурный диапазон
К5306HT04BУ КФЦС.431000.001ТУ КФЦС.431320.010.01СП	НТ04ВУ	5241.8-1H3 K	-45°C+85°C
К5306HT04BT КФЦС.431000.001ТУ КФЦС.431320.010.01СП	HT04BT	4303.8-DH3 K	-45°C+85°C

Микросхемы категории качества «ОТК» маркируются буквой К в зоне маркировки специального символа.

Лист регистрации изменений

Дата	Версия	Изменения
17.10.2025	1.0	Исходная версия
	<u> </u>	