

Интегральный цифровой датчик температуры с 1-Wire интерфейсом управления

Версия 1.1

К5306HT04П / К5306HT04У / К5306HT04T

Основные особенности

- Точность измерения температуры 0,5°C;
- 1-Wire интерфейс;
- 64-х разрядный адрес;
- Время преобразования 200 мс;
- Напряжение питания VDD = 3,3 В ... 5,0 В;
- Ток потребления:
 0,15 мА при VDD = 3,3 В;
 0,18 мА при VDD = 5,0 В;
- Температурный диапазон от –45°С до +85°С.

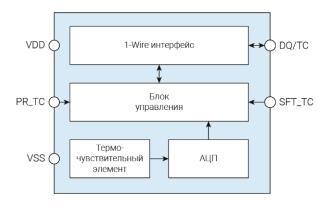


Рисунок 1. Структурная схема

Общее описание

Интегральный температурный датчик K5306HT04П/У/Т предназначен для преобразования значения температуры в цифровой код. Взаимодействие управляющего микроконтроллера с микросхемой осуществляется по 1-Wire интерфейсу.

Каждая микросхема имеет уникальный 64-х разрядный адрес, что обеспечивает возможность применения нескольких микросхем на одной линии.

Микросхема К5306HT04П – pin-to-pin совместимый аналог DS18B20 (Maxim Integrated).

Микросхема K5306HT04T – pin-to-pin совместимый аналог DS18B20U (Maxim Integrated).

Рисунок 2. Внешний вид микросхемы К5306НТ04П

Рисунок 3. Внешний вид микросхемы К5306HT04У

Рисунок 4. Внешний вид микросхемы K5306HT04T

ГГ – год выпуска НН – неделя выпуска

Микросхемы К5306НТ04П, К5306НТ04У, К5306НТ04Т имеют в своей основе один кристалл и отличаются только типом корпуса:

- К5306НТ04П выполнена в 3-х выводном металлополимерном корпусе 1112.3-А К (ТО-92);
- К5306HT04У выполнена в 8-ти выводном металлополимерном корпусе 5241.8-1H3 К (mDFN8);
- K5306HT04T выполнена в 8-ми выводном металлополимерном корпусе 4303.8-DH3 К (SOIC-8).

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Электрические параметры микросхемы

Таблица 1. Электрические характеристики (температурный диапазон от -45°C до +85°C)

Парамотр опишина изморошия	Норма параметра					
Параметр, единица измерения	не менее	типовое	не более			
Точность измерения температуры, °С	-2,5	0,5	+2,5			
Время преобразования, мс	100	200	300			
Ток потребления, мА						
при VDD = 3,3 B		0,15	0,3			
при VDD = 5,0 B		0,18	0,3			
Напряжение низкого уровня цифровых сигналов (DQ/TC), В		0	0,5			

Электростатическая защита

Микросхема имеет встроенную защиту от электростатического разряда до 1000 В по модели человеческого тела. Требует мер предосторожности.

Режимы эксплуатации

Таблица 2. Предельно-допустимые и предельные режимы эксплуатации

Параметр, единица измерения	Предельно-, көр	допустимый ким	Предельный режим		
	не менее	не более	не менее	не более	
Напряжение питания (VDD), В	3,0	5,5	-0,3	5,6	
Входное напряжение высокого уровня цифровых сигналов (DQ, SFT_TC), В	VDD-0,7 ⁽¹⁾	VDD+0,3 ⁽²⁾	-0,5	VDD+0,5 ⁽³⁾	
Входное напряжение низкого уровня цифровых сигналов (DQ, SFT_TC), В	-0,3	0,5	-0,5	VDD+0,5 ⁽³⁾	
Напряжение программирования (PR_TC), В	9,2	9,4	-0,3	9,5	
Температура эксплуатации, °С	-45	+85	-60	+100	

Примечание:

- 1) Не менее 3,0 В;
- 2) Не более 5,5 В;
- 3) Не более 5,6 В.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Конфигурация и функциональное описание выводов

Таблица 3. Функциональное описание выводов

№ вь	№ вывода		Наименование	
НТ04Т НТ04У	НТ04П	НТ04П вывода вывода		Назначение вывода
1	_	DI	SFT_TC	Вход выбора режима работы памяти
2, 6	_	=	NC	Вывод не используется (оставить в обрыве)
3	3	PWR	VDD	Вывод положительного напряжения питания
4	2	DI/DO	DQ/TC	Информационный вход/выход
5, 7	1	PWR	VSS	Общий вывод
8	_	Al	PR_TC	Вывод программирования памяти

Примечание:

AI – аналоговый вход

DI – цифровой вход

DO – цифровой выход

PWR - вывод напряжения питания

Эквивалентные схемы

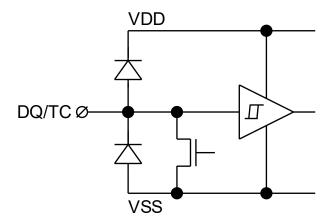
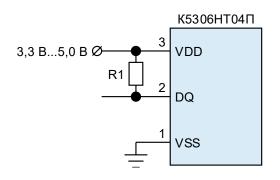



Рисунок 5. Цифровой вход/выход DQ/TC

Рекомендуемая схема применения

Компонент	Номинал
R1	4,7 кОм



Рисунок 6. Рекомендуемая схема применения для микросхемы К5306HT04П (режим температурный датчик)

Рисунок 7. Рекомендуемая схема применения для микросхемы K5306HT04У/T

Описание функционирования микросхемы

Микросхема К5306НТ04П/У/Т может быть настроена на один из вариантов работы:

температурный датчик – преобразование значения температуры в цифровой код и выдача данных через 1-Wire интерфейс;

термостат – выход микросхемы переключается в зависимости от порогов срабатывания TH и TL, тип выхода – открытый сток.

Режим температурного датчика

Взаимодействие управляющего микроконтроллера с микросхемами К5306НТ04П, К5306НТ04У и К5306НТ04Т осуществляется через 1-Wire интерфейс. Это низкоскоростной двунаправленный последовательный протокол обмена данными, использующий всего один сигнальный провод – DQ. Благодаря адресации имеется возможность объединять на одной шине несколько независимо работающих датчиков.

Типы сигналов, определенные однопроводным интерфейсом: импульс сброса, импульс присутствия, запись лог. «0», запись лог. «1», чтение лог. «0», чтение лог. «1».

Принцип формирования сигналов во всех случаях одинаковый. В начальном состоянии шина DQ с помощью резистора подтянута к VDD. Тип выхода — открытый сток. Микроконтроллер (ведущее устройство) устанавливает шину DQ в состояние лог. «0» на определенное время, затем «отпускает» ее и ждет ответ от микросхемы термодатчика (ведомое устройство).

Последовательность команд для взаимодействия с ИМС:

Инициализация ightarrow ROM-команда ightarrow Функциональная команда.

Инициализация

Взаимодействие микроконтроллера с термодатчиком начинается с инициализации. Последовательность инициализации состоит из импульса сброса и импульса присутствия. Микроконтроллер на время $t1 \ge 910$ мкс устанавливает шину DQ в состояние лог. «0». Термодатчик принимает импульс сброса и через время t2 = 15 - 60 мкс отвечает микроконтроллеру импульсом присутствия: устанавливает шину DQ в состояние лог. «0» на время t3 = 60 - 240 мкс. Импульс присутствия позволяет ведущему устройству узнать, что ведомые устройства подключены к шине DQ и готовы к работе.

Важно! В микросхеме K5306HT04(Π /У/T) время t1 ≥ 910 мкс.

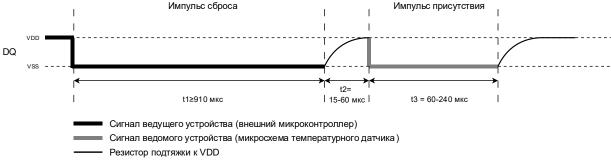


Рисунок 8. Временная диаграмма инициализации микросхемы

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Парамотр опинина изморония	Норма параметра					
Параметр, единица измерения	не менее	не более				
Время импульса сброса t ₁ , мкс	910	-				
Время паузы t ₂ , мкс	15	60				
Время импульса присутствия t ₃ , мкс	60	240				

Запись/чтение данных

После обнаружения импульса присутствия микроконтроллер может передать ROM-команду. Запись/чтение одного бита данных выполняется в течение фиксированного интервала времени (слот). Для записи лог. «0» микроконтроллер устанавливает шину DQ в состояние лог. «0» на время $t_4 = 60 - 120$ мкс. Запись следующего бита осуществляется через время $t_5 \ge 4$ мкс. Для записи лог. «1» микроконтроллер устанавливает шину DQ в состояние лог. «0» на время $t_6 = 4 - 12$ мкс. Запись следующего бита данных осуществляется через время $t_7 \ge 64$ мкс.

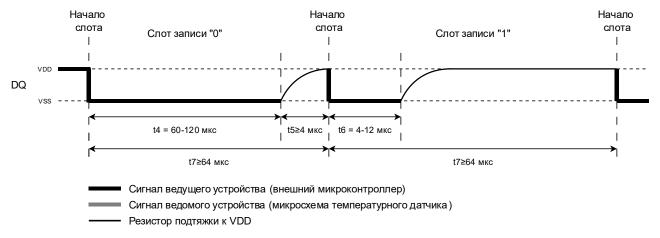


Рисунок 9. Временная диаграмма записи данных

Таблица 5. Временные параметры записи микросхемы

Попомоть опинина измерения	Норма параметра					
Параметр, единица измерения	не менее	не более				
Время записи лог. «0» t ₄ , мкс	60	120				
Время паузы после записи лог. «0» t₅, мкс	4	_				
Время записи лог. «1» t ₆ , мкс	4	12				
Время слота записи t ₇ , мкс	64	_				

Термодатчик является ведомым устройством и может передавать данные, только когда микроконтроллер формирует на шине DQ слоты чтения.

Для формирования слота чтения микроконтроллер устанавливает шину DQ в состояние лог. «0» на время t8 = 2 - 10 мкс, а затем «отпускает» ее, передавая управление датчику. Если микросхема передает лог. «0», то шина DQ остается в состоянии лог. «0» на время t9 = 15 - 60 мкс. Если микросхема передает лог. «1», то на шине DQ устанавливается состояние лог. «1».

Микроконтроллер может считывать данные датчика через t10 = 15 мкс после начала слота чтения.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

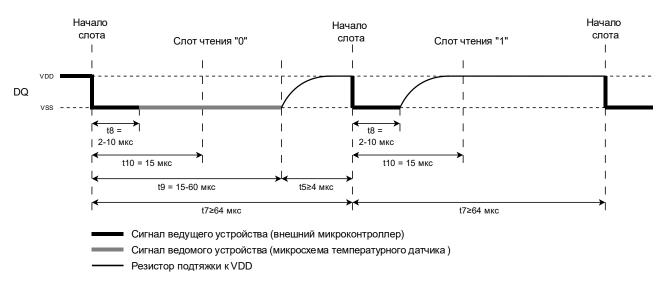


Рисунок 10. Временная диаграмма чтения данных

Таблица 6. Временные параметры чтения микросхемы

Парамотр одинина изморония	Норма параметра					
Параметр, единица измерения	не менее	типовое	не более			
Время паузы после записи лог. «0» t₅, мкс	4					
Время длительности слота чтения t_7 , мкс	64	_	_			
Время установки микроконтроллером шины DQ в состояние лог. «0» t ₈ , мкс	2	-	10			
Время при передаче микросхемой лог. «0» t ₉ , мкс	15	_	60			
Время считывания данных датчика микроконтроллером t ₁₀ , мкс	-	15	_			

ROM-команды

Каждая ROM-команда имеет длину 8 бит. Обмен данными по шине DQ происходит последовательно, начиная с младшего бита. Блок-схема последовательности выполнения ROM-команд представлена ниже (Рисунок 12).

search_rom (код команды 0xF0) – Поиск ROM.

Команда используется для определения адресов всех микросхем, подключенных к одной шине DQ. Каждая микросхема содержит уникальный 64-разрядный адрес, который хранится в ПЗУ (ROM): младшие 56 бит — уникальный серийный номер устройства; старшие 8 бит — циклический код CRC, позволяющий контролировать правильность чтения данных из микросхемы. Адрес позволяет микроконтроллеру выделить конкретную микросхему на шине DQ.

Рисунок 11. Структура 64-х разрядного адреса микросхемы (МБ – младший бит, СБ – старший бит)

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Микроконтроллер формирует на шине DQ два слота чтения. В первый слот все устройства, подключенные к шине DQ, выдают первый бит своего 64-разрядного кода, во второй слот – инвертированное значение первого бита.

Если у всех устройств первый бит адреса «1», то микроконтроллер примет сначала «1», а затем «0». Если хотя бы у одного устройства первый бит адреса «0», то микроконтроллер в обоих случаях примет «0». Если активных устройств на шине нет, микроконтроллер в обоих случаях примет «1».

После чтения прямого и инверсного бита адреса микроконтроллер выставляет на шине DQ соответствующий бит выбора (слот записи) – «0» или «1». Устройства, у которых переданный бит соответствует выставленному микроконтроллером, продолжат работу, остальные станут неактивными до следующего сигнала сброса.

Далее процедура повторяется еще 63 раза:

формирование первого тайм слота чтения \to чтение состояние шины \to формирование второго тайм слота чтения \to чтение состояния шины \to ответ подчиненным устройствам.

После завершения цикла чтения 64-разрядного кода, микроконтроллер будет знать адрес одного устройства. Для получения следующего адреса, нужно запустить процедуру инициализации и снова запустить цикл чтения. В случае неоднозначности (микроконтроллер принимает два «0»), выставить бит выбора отличный от предыдущего раза. Сколько устройств подключено к шине, столько раз и нужно провести описанную процедуру.

alarm_search (код команды 0xEC) – Поиск ALARM ROM.

Команда работает аналогично search_rom, но отвечают только те микросхемы, у которых превышены температурные пороги TH и TL, записанные в ОТР память.

read_rom (код команды 0х33) - Чтение ROM.

Команда используется для определения адреса микросхемы при условии подключения только одной микросхемы.

Интерфейс передает адрес микросхемы из 64-разрядного регистра микроконтроллеру по шине DQ в течение 64 слотов чтения.

match_rom (код команды 0х55) – Выбор ROM.

Команда используется для обращения микроконтроллера к конкретной микросхеме, подключенной к шине DQ.

Микроконтроллер формирует и передает 64-разрядный код в виде слотов записи. Ведомое устройство, чей адрес совпал с 64-разрядным кодом после побитного сравнения, переходит в режим ожидания функциональной команды. Остальные устройства, подключенные к шине DQ, станут неактивными до следующего импульса сброса.

skip_rom (код команды 0xCC) – Пропуск ROM.

Команда используется для обращения ко всем микросхемам, подключенным к шине DQ.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

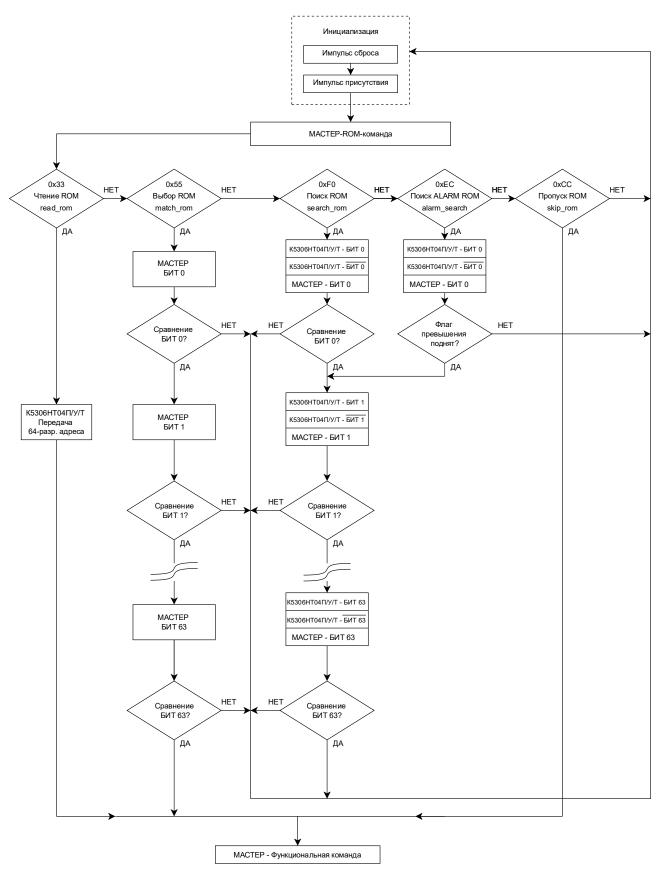


Рисунок 12. Блок-схема ROM-команд

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Функциональные команды

После того как микроконтроллер выполнил ROM-команду возможно использование функциональной команды. Команды позволяют микроконтроллеру начать чтение температурного кода из регистра либо запустить преобразование температуры.

Блок-схема последовательности выполнения функциональных команд представлена ниже (Рисунок 13).

convert_t (код команды 0х44) – Преобразование температуры.

Команда используется для запуска процесса преобразования температуры.

Время преобразования температуры 200 мс — это время с момента завершения подачи команды *convert_t* до начала следующей инициализации.

Read_scratchpad (код команды 0xBE) – Чтение температурного кода из регистра.

Команда используется для чтения 64-х разрядного цифрового кода из регистра.

Интерфейс передает данные из 64-разрядного регистра микроконтроллеру по шине DQ в течение 64 слотов чтения. Данные выдаются младшим битом вперед. Формат выходных данных представлен ниже (Таблица 7).

Перед использованием команды Read_scratchpad (код команды 0xBE) нужно убедиться, что преобразование температуры завершено. Для этого после команды convert_t (код команды 0x44) необходимо сформировать слот чтения. Если датчик передает лог. «0» — преобразование не завершено, если датчик передает лог. «1» — преобразование температуры завершено, чтение памяти разрешено.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

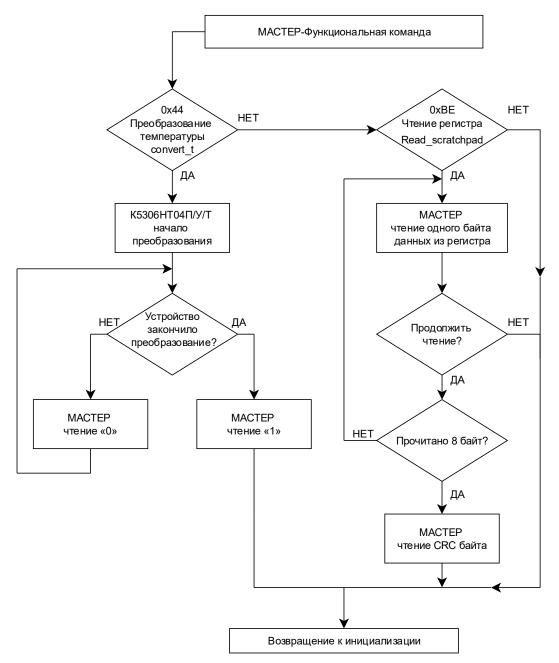


Рисунок 13. Блок-схема функциональных команд

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Преобразование температуры

Для начала преобразования температуры микроконтроллер должен отправить функциональную команду *Преобразование температуры – convert_t (код команды 0х44)*. После преобразования данные хранятся в регистре микросхемы в виде 64-разрядного числа.

Таблица 7. Структура регистра микросхемы

Байт 0	Температура мл.
Байт 1	Температура ст.
Байт 2	Верхний порог температурного компаратора
Байт 3	Нижний порог температурного компаратора
Байт 4	Резерв 7Fh
Байт 5	Резерв FFh
Байт 6	Полярность температурного компаратора + 7'b0
Байт 7	Резерв 10h
Байт 8	Циклический код CRC

В первых двух ячейках (Байт 0 и Байт 1) хранятся младший и старший байты измеренной температуры. Ячейки 2 и 3 содержат значения верхнего и нижнего порога температурного компаратора. По умолчанию значения регистров верхнего порога (Байт 2) и нижнего порога (Байт 3) равны 0х00 как в режиме «SOFT», так и в режиме «HARD». Ячейка 6 содержит бит полярности (POL, Рисунок 14, Рисунок 15) и семь младших битов всегда равных нулю. Ячейка 8 содержит циклический код CRC для первых восьми байт.

Для выдачи данных из регистра необходимо выполнить функциональную команду Чтение регистра – Read_scratchpad (код команды 0xBE). Микроконтроллер принимает из регистра 64-разрядный цифровой код. Первые 16 разрядов относятся к значениям температуры. Пять старших бит знаковые: 00000 – температура положительная; 11111 – температура отрицательная.

Организация температурного кода

При считывании температурного кода выходные данные будут иметь вид, приведенный в таблице ниже. Выходные данные преобразуются в соответствии с таблицей соотношения выходных данных и температуры (Таблица 9).

Таблица 8. Выходные данные при считывании температурного кода

Мл. байт	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
	D	D	D	D	D	D	D	D
Ст. байт	Бит 15	Бит 14	Бит 13	Бит 12	Бит 11	Бит 10	Бит 9	Бит 8
Ст. Оайт	S	S	S	S	S	D	D	D

D – значащие биты, S – знаковые биты (S – лог. «0» температура положительная, S – лог. «1» температура отрицательная).

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Таблица 9. Таблица соотношения выходных данных и температуры

Температура, °С	Выход (BIN)	Выход (НЕХ)
+85	0000 0101 0101 0000	0550h
+25,125	0000 0001 1001 0010	0192h
+10,125	0000 0000 1010 0010	00A2h
0	0000 0000 0000 0000	0000h
-10,125	1111 1111 0101 1110	FF5Eh
-25,125	1111 1110 0110 1110	FE6Eh
-45	1111 1101 0011 0000	FC90h

Для преобразования положительной температуры (пять старших бит 00000) в градусы Цельсия необходимо выходные данные перевести из двоичного числа в десятичное и умножить на коэффициент 0,0625.

Для преобразования отрицательной температуры (пять старших бит 11111) в градусы Цельсия необходимо выходные данные инвертировать, полученное двоичное число перевести в десятичное, прибавить 1 и умножить на коэффициент 0,0625.

После выхода температуры за рамки предельно-допустимого режима датчик продолжит выдавать код в соответствии с приведенной формулой. Например, для температуры +90°C выходной код 05A0h (0000 0101 1010 0000), для температуры минус 50°C выходной код FCE0h (1111 1100 1110 0000).

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

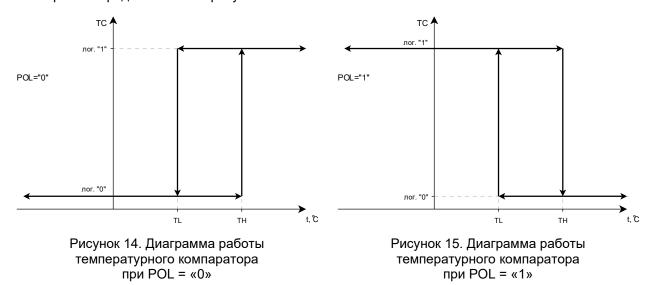
Термостат

Второй вариант работы микросхемы – термостат. Выход микросхемы переключается в зависимости от порогов срабатывания ТН и TL. Настройка порогов срабатывания и полярности термостата производится через 1-Wire интерфейс.

TH – настройка верхнего порога срабатывания термостата (11 бит);

TL – настройка нижнего порога срабатывания термостата (11 бит).

Таблица 10. Таблица настройки порога переключения термостата


Значение порога						Биты					
переключения, °С	10	9	8	7	6	5	4	3	2	1	0
+85	0	1	0	1	0	1	0	1	0	0	0
+25,125	0	0	0	1	1	0	0	1	0	0	1
-25,125	1	1	1	0	0	1	1	0	1	1	1
– 45	1	1	0	1	0	0	1	1	0	0	0

Старший бит (бит 10) знаковый: 0 – температура положительная; 1 – температура отрицательная.

Для преобразования положительной температуры (бит 10 = «0») необходимо значение порога переключения разделить на коэффициент 0,125 и перевести из десятичного числа в двоичное.

Для преобразования отрицательной температуры (бит 10 = «1») необходимо значение порога переключения взять по модулю, разделить на коэффициент 0,125, вычесть 1, перевести из десятичного числа в двоичное и инвертировать.

POL – настройка полярности выхода (TC) термостата. Графики работы термостата в зависимости от полярности представлены на рисунках ниже.

Примечание:

Разность между порогами TL и TH должна составлять не менее 5,0°C.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП

Термостат имеет два режима работы:

- режим отладки («SOFT»), после включения питания необходимо каждый раз производить настройку микросхемы;
- режим финальной конфигурации («HARD»), после программирования микросхема готова к работе при включении питания.

После программирования микросхемы в режим «HARD» 1-Wire интерфейс и работа в режиме температурного датчика будут не доступны.

Настройка микросхемы в режиме «SOFT»

Для настройки микросхемы необходимо:

- 1) Перевести микросхему в режим «SOFT» подав лог. «1» на вывод SFT_TC.
- 2) Произвести инициализацию.
- 3) После получения импульса присутствия подать команду skip_rom (0xCC).
- 4) Подать команду write_tc (0xDB) запись в память.
- 5) Далее подать 23 бита данных (младшим битом вперед), где с 1 по 11 нижний порог (TL), с 12 по 22 верхний порог (TH) и 23 бит полярность (POL).
- 6) Для проверки записанных данных можно повторить пункты 2-3 и подать команду *read_tc* (0x5A) и сформировать 23 слота чтения. Микросхема должна выдать записанные на предыдущем пункте данные.
- 7) После проверки корректности записанных данных, нужно повторить пункты 2-3 и подать команду *tc_mode (0xFF)*. Микросхема перейдет в режим «термостата».

Программирование микросхемы (режим «HARD»)

- 1) Записать нужные данные в регистры TL, TH и POL в режиме «SOFT» (SFT_TC = «1»);
- 2) Подать на вывод PR_TC напряжение 9,0 В в течение 200 мс (ограничение по току не менее 8,0 мА на 1 программируемый бит);
- 3) После программирования перевести микросхему в режим «HARD» (SFT_TC = «0»);
- 4) Проверить корректность запрограммированных данных (пункт 6 настройки микросхемы в режиме «SOFT»);
- 5) Если данные корректны, снова перевести микросхему в режим «SOFT» (SFT_TC = «1»);
- 6) Выполнить пункт 7 настройки микросхемы в режиме «SOFT»;
- 7) Подать на вывод PR_TC напряжение 9,0 В в течение 200 мс (ограничение по току не менее 8,0 мА на 1 программируемый бит);
- 8) Микросхема запрограммирована в режим термостата, работа в режиме температурного датчика не доступна.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Габаритный чертеж

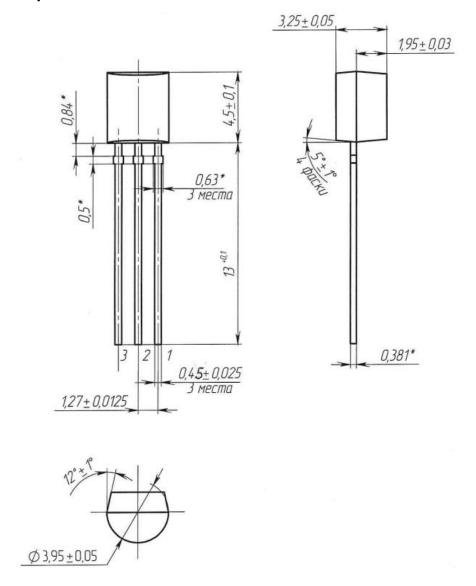


Рисунок 16. Габаритный чертеж корпуса 1112.3-А К (размеры в мм)

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

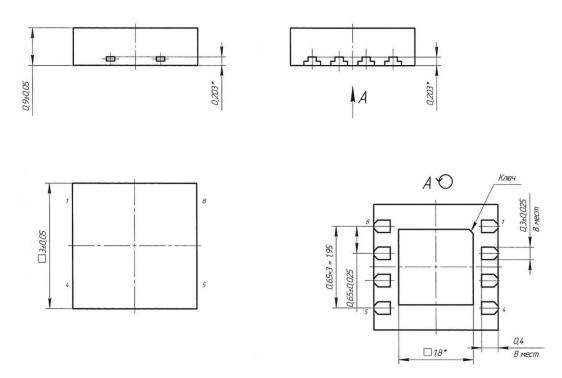


Рисунок 17. Габаритный чертеж корпуса 5241.8-1Н3 К (размеры в мм)

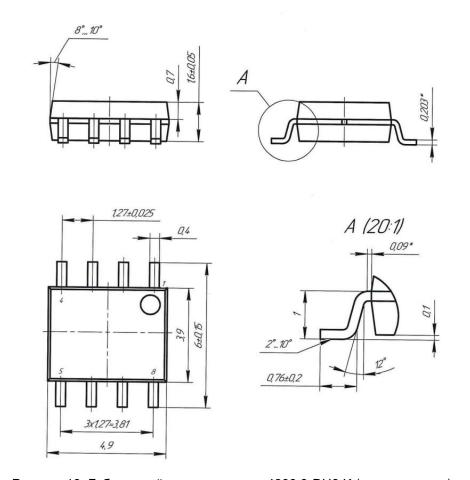


Рисунок 18. Габаритный чертеж корпуса 4303.8-DH3 К (размеры в мм)

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Информация для заказа

Обозначение	Маркировка	Корпус	Температурный диапазон
К5306НТ04П КФЦС.431000.001ТУ спецификация КФЦС.431320.010.01СП	НТ04П	1112.3-A K	–45°C…+85°C
К5306НТ04У КФЦС.431000.001ТУ спецификация КФЦС.431320.010.01СП	НТ04У	5241.8-1H3 K	-45°C+85°C
К5306НТ04Т КФЦС.431000.001ТУ спецификация КФЦС.431320.010.01СП	HT04T	4303.8-DH3 K	–45°C…+85°C

Микросхемы категории качества «ОТК» маркируются буквой «К» в зоне технологической маркировки (в правом верхнем углу).

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия КФЦС.431000.001ТУ, спецификация КФЦС.431320.010.01СП.

Лист регистрации изменений

Дата	Версия	Изменения
29.09.2025	1.0	Исходная версия
17.11.2025	1.1	Обновлен пункт «Конфигурация и функциональное описание выводов»; — обновлена таблица 3. Обновлен пункт «Рекомендуемая схема применения»: — обновлены рисунки 6-7. Обновлен пункт «Описание функционирования микросхемы»: — обновлен рисунок 8.
L	1	