2-канальный 4-разрядный двунаправленный транслятор цифровых уровней с функцией «холодный резерв»

Версия 2.0 **5400ТР045А-038**

Основные особенности

• Напряжение питания портов А и В:

VDDA(B) = +2.5 B;

VDDA(B) = +3.3 B;

VDDA(B) = +5.0 B;

- Нагрузочная способность 24 мА;
- Задержка переключения не более 32 нс;
- Время нарастания/спада 3 нс;
- Функция «холодный резерв»;
- Температурный диапазон от –60°С до +125°С.

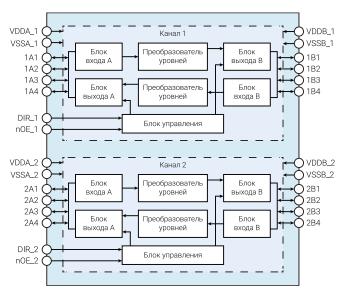


Рисунок 1. Структурная схема

ГГ – год выпуска НН – неделя выпуска

Рисунок 2. Внешний вид микросхемы 5400ТР045А-038

Общее описание

Микросхема 5400TP045A-038 — двухканальный 4-разрядный двунаправленный транслятор цифровых сигналов. Может работать как 8-разрядный формирователь, так и как два независимых 4-разрядных формирователя. Микросхема выполнена на базе радиационно-стойкого аналогоцифрового БМК 5400TP04 по технологии КНИ.

Микросхема 5400TP045A-038 предназначена для преобразования логических уровней цифровых сигналов. Каждый канал имеет свой домен питания, информационные порты (A<1:4>, B<1:4>) и сигналы управления nOE и DIR.

В микросхеме реализована функция «холодный резерв»: при подключении резервные элементы не несут нагрузки и не влияют на работу основных компонентов.

Микросхема выполнена в 28-ми выводном металлокерамическом корпусе МК 5123.28-1.01.

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Электрические параметры микросхемы

Таблица 1. Электрические характеристики (температурный диапазон от -60°C до +125°C)

,0 ,6 ,8	230	не более 500
,6 ,8	230	500
,6 ,8		
,6 ,8		
,8		
•		
^		
,8	$VDD_{выхода}$	
,0		
,0		
,0		
	0	0,5
	0	0,5
	,0 ,0 ,0	,0 ,0 ,0

Примечание:

Электростатическая защита

Микросхема имеет встроенную защиту от электростатического разряда до 200 В по модели человеческого тела. Требует мер предосторожности.

¹⁾ При DIR = «0», порты A – выходы, порты B – входы.

При DIR = «1», порты A – входы, порты B – выходы.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Предельно-допустимые и предельные режимы эксплуатации

Таблица 2. Предельно-допустимые и предельные режимы эксплуатации

Параметр, единица измерения	• • •	ельно- ый режим	Предельный режим	
	не менее	не более	не менее	не более
Диапазон напряжения питания портов A и B (VDDA, VDDB), B	2,25	5,25	-0,3	5,35
Входное напряжение низкого уровня цифровых сигналов (хA1хA4, хB1хB4), В	-0,3	0,5	-0,5	VDD _{входа} + 0,5 ⁽¹⁾
Входное напряжение высокого уровня цифровых сигналов (хA1хA4, хB1хB4), В				
при VDD _{входа} = 2,25 В2,75 В	1,7			
при VDD _{входа} = 3,0 В3,6 В	2,0	VDD _{входа}	-0,5	VDD _{входа} +
при VDD _{входа} = 4,5 В5,25 В	VDD _{входа} × 0,7	V DD _{ВХОДА}	-0,5	0,5 ⁽¹⁾
Входное напряжение низкого уровня управляющих сигналов (nOE_x, DIR_x), В	-0,3	0,5	-0,5	VDDA+ 0,5 ⁽¹⁾
Входное напряжение высокого уровня управляющих сигналов (nOE_x, DIR_x) ⁽²⁾ , В				
при VDDA = 2,25 B2,75 B	1,7			.,
при VDDA = 3,0 В3,6 В	2,0	VDDA	-0,5	VDDA+ 0,5 ⁽¹⁾
при VDDA = 4,5 В5,25 В	VDDA×0,7			0,5
Допустимый диапазон напряжения на портах A и B при nOE_x = лог. «1», B	-0,3	VDD _{входа}	-0,5	VDD _{входа} + 0,5 ⁽¹⁾
Нагрузочная способность, мА				
при VDD _{выхода} = 2,5 B; 3,3 B	_	8,0	_	9,0
при VDD _{выхода} = 5,0 В	_	24	_	25
Температура эксплуатации, °С	-60	+125	-60	+150

Примечание:

¹⁾ не более 5,35 В

²⁾ входные уровни сигналов управления nOE и DIR должны соответствовать уровню питания порта A

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Конфигурация и функциональное описание выводов

Таблица 3. Функциональное описание выводов

1		вывода	Назначение вывода	
i	DI/DO	1A3	Вход/выход 3-го разряда порта А 1-го канала	
2	DI/DO	1A2	Вход/выход 2-го разряда порта А 1-го канала	
3	DI/DO	1A1	Вход/выход 1-го разряда порта А 1-го канала	
4	PWR	VSSA_1	Общий вывод порта А 1-го канала	
5	DI	nOE_1	Вывод переключения работы портов A и B 1-го канала: лог. «0» – передача разрешена; лог. «1» – передача запрещена.	
6	PWR	VDDB_1	Положительное напряжение питания порта В 1-го канала	
7	DI/DO	1B1	Вход/выход 1-го разряда порта В 1-го канала	
8	DI/DO	1B2	Вход/выход 2-го разряда порта В 1-го канала	
9	DI/DO	1B3	Вход/выход 3-го разряда порта В 1-го канала	
10	DI/DO	1B4	Вход/выход 4-го разряда порта В 1-го канала	
11	PWR	VSSB_1	Общий вывод порта В 1-го канала	
12	DI	DIR_2	Направление передачи сигнала 2-го канала: лог. «0» – порты А выходы, порты В входы; лог. «1» – порты А входы, порты В выходы.	
13	PWR	VDDA_2	Положительное напряжение питания порта А 2-го канала	
14	DI/DO	2A4	Вход/выход 4-го разряда порта А 2-го канала	
15	DI/DO	2A3	Вход/выход 3-го разряда порта А 2-го канала	
16	DI/DO	2A2	Вход/выход 2-го разряда порта А 2-го канала	
17	DI/DO	2A1	Вход/выход 1-го разряда порта А 2-го канала	
18	PWR	VSSA_2	Общий вывод порта А 2-го канала	
19	DI	nOE_2	Вывод переключения работы портов A и B 2-го канала: лог. «0» – передача разрешена; лог. «1» – передача запрещена.	
20	PWR	VDDB_2	Положительное напряжение питания порта В 2-го канала	
21	DI/DO	2B1	Вход/выход 1-го разряда порта В 2-го канала	
22	DI/DO	2B2	Вход/выход 2-го разряда порта В 2-го канала	
23	DI/DO	2B3	Вход/выход 3-го разряда порта В 2-го канала	
24	DI/DO	2B4	Вход/выход 4-го разряда порта В 2-го канала	
25	PWR	VSSB_2	Общий вывод порта В 2-го канала	
26	DI	DIR_1	Направление передачи сигнала 1-го канала: лог. «0» – порты А выходы, порты В входы; лог. «1» – порты А входы, порты В выходы.	
27	PWR	VDDA_1	Положительное напряжение питания порта А 1-го канала	
28	DI/DO	1A4	Вход/выход 4-го разряда порта А 1-го канала	

Примечание:

DI – цифровой вход

DO – цифровой выход

PWR – вывод напряжения питания

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Эквивалентные схемы

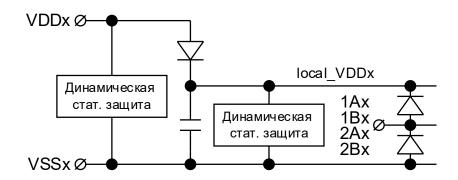


Рисунок 3. Структурная схема реализации электростатической защиты входа

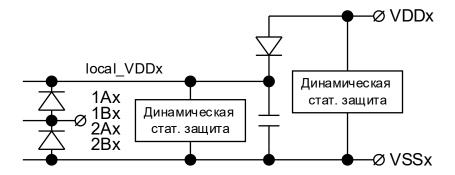


Рисунок 4. Структурная схема реализации электростатической защиты выхода

Временные диаграммы

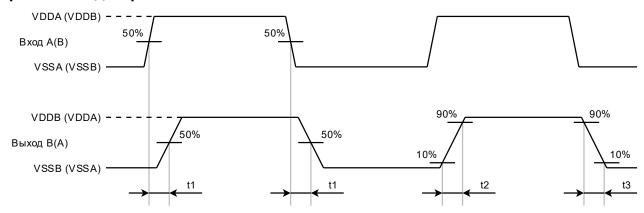


Рисунок 5. Временная диаграмма работы микросхемы

Таблица 4. Справочные данные

Попомоть опишина изменения	i	Норма параметра		
Параметр, единица измерения	не менее	типовое	не более	
Задержка переключения t1 (на уровне 50%), нс				
при VDD $_{\rm BXOДA}$ = 2,5 B, VDD $_{\rm BЫXОДA}$ = 2,5 B		23	32	
при VDD _{входа} = 2,5 B, VDD _{выхода} = 5,25 B		14	25	
при VDD $_{\rm BXOДA}$ = 5,25 B, VDD $_{\rm BЫXOДA}$ = 2,5 B		18	25	
при VDD _{входа} = 5,25 B, VDD _{выхода} = 5,25 B		9	17	
при VDD $_{\rm BXOДA}$ = 3,3 B, VDD $_{\rm BЫXОДA}$ = 3,3 B		14		
при VDD _{входа} = 3,3 B, VDD _{выхода} = 5,25 B		12		
при VDD $_{\rm BXOДA}$ = 5,25 B, VDD $_{\rm BЫXOДA}$ = 3,3 B		13		
Время нарастания t2 (от 10% до 90%), нс				
при VDD $_{\rm BXOДA}$ = 2,5 B, VDD $_{\rm BЫXОДA}$ = 2,5 B		4	17	
при VDD _{входа} = 2,5 B, VDD _{выхода} = 5,25 B		3	10	
при VDD $_{\rm BXOДA}$ = 5,25 B, VDD $_{\rm BЫXOДA}$ = 2,5 B		4	17	
при VDD _{входа} = 5,25 B, VDD _{выхода} = 5,25 B		3	10	
при VDD $_{\rm BXOДA}$ = 3,3 B, VDD $_{\rm BЫXОДA}$ = 3,3 B		4		
при VDD _{входа} = 3,3 B, VDD _{выхода} = 5,25 B		3		
при VDD $_{\rm BXOДA}$ = 5,25 B, VDD $_{\rm BЫXОДA}$ = 3,3 B		4		
Время спада t3 (от 90% до 10%), нс				
при VDD _{входа} = 2,5 B, VDD _{выхода} = 2,5 B		3	17	
при VDD $_{\rm BXOДA}$ = 2,5 B, VDD $_{\rm BЫXОДA}$ = 5,25 B		3	10	
при VDD $_{\rm BXOДA}$ = 5,25 B, VDD $_{\rm BЫXOДA}$ = 2,5 B		3	17	
при VDD _{входа} = 5,25 B, VDD _{выхода} = 5,25 B		3	10	
при VDD $_{\rm BXOДA}$ = 3,3 B, VDD $_{\rm BЫXОДA}$ = 3,3 B		3		
при VDD $_{\rm BXOДA}$ = 3,3 B, VDD $_{\rm BЫXОДA}$ = 5,25 B		3		
при VDD $_{\rm BXOДA}$ = 5,25 B, VDD $_{\rm BЫXOДA}$ = 3,3 B		3		

Примечание:

При DIR = «0», порты A – выходы, порты B – входы.

При DIR = «1», порты A – входы, порты B – выходы.

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Типовые характеристики

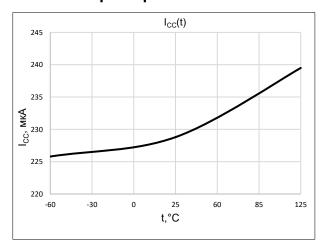


Рисунок 6. Зависимость тока потребления от температуры

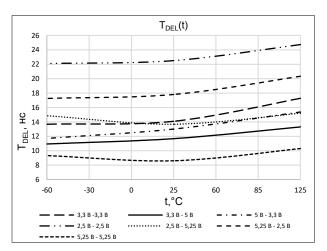


Рисунок 7. Зависимость задержки переключения от температуры при разных значениях входных и выходных напряжений

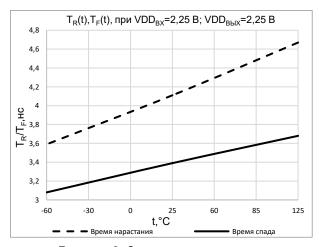


Рисунок 8. Зависимость времени нарастания/спада от температуры при VDD_{входа}=2,25 B; VDD_{выхода}=2,25 B

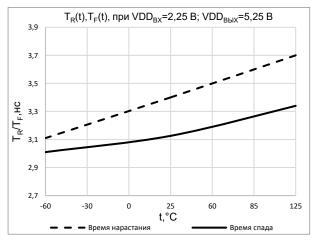


Рисунок 9. Зависимость времени нарастания/спада от температуры при $VDD_{\text{входа}}$ =2,25 B; $VDD_{\text{выхода}}$ =5,25 B

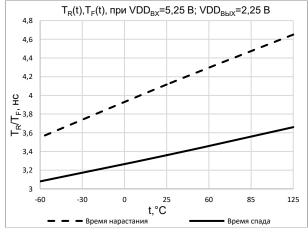


Рисунок 10. Зависимость времени нарастания/спада от температуры при $VDD_{входа}$ =5,25 B; $VDD_{выхода}$ =2,25 B

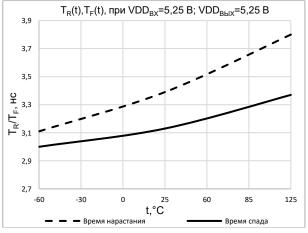


Рисунок 11. Зависимость времени нарастания/спада от температуры при $VDD_{\text{входа}}$ =5,25 B; $VDD_{\text{выхода}}$ =5,25 B

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

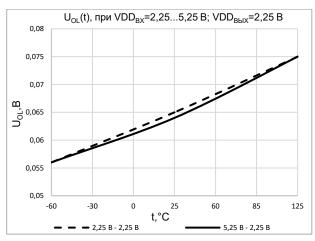


Рисунок 12. Зависимость выходного напряжения низкого уровня портов A и B от температуры при VDD $_{\rm BXOДA}$ =2,25 B; 5,25 B; VDD $_{\rm BLXOДA}$ =2,25 B; $I_{\rm load}$ = 8,0 мA

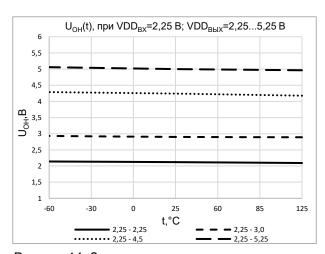


Рисунок 14. Зависимость выходного напряжения высокого уровня портов A и B от температуры при VDD $_{\rm BXOДA}$ =2,25 B; VDD $_{\rm BЫХОДA}$ =2,25 B ...5,25 B ($I_{\rm load}$ = 8,0 мA при VDD $_{\rm BЫХОДA}$ =2,25 B; 3,0 B; $I_{\rm load}$ = 24 мA при VDD $_{\rm BЫХОДA}$ =4,5 B; 5,25 B)

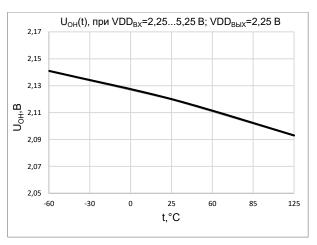


Рисунок 13. Зависимость выходного напряжения высокого уровня портов A и B от температуры при VDD $_{\rm BXOДA}$ =2,25 B; 5,25 B; VDD $_{\rm BЫХОДA}$ =2,25 B; $I_{\rm load}$ = 8,0 мA

Рекомендуемая схема применения

Таблица 5. Таблица внешних компонентов

Компонент	Номинал
C1 – C4	100 нФ

Конденсаторы либо высокочастотные керамические, либо сдвоенные. В случае сдвоенных конденсаторов, один из них обязательно должен быть высокочастотный керамический емкостью не менее 10 нФ. Шунтирующие конденсаторы должны располагаться на плате в непосредственной близости к соответствующим выводам микросхемы.

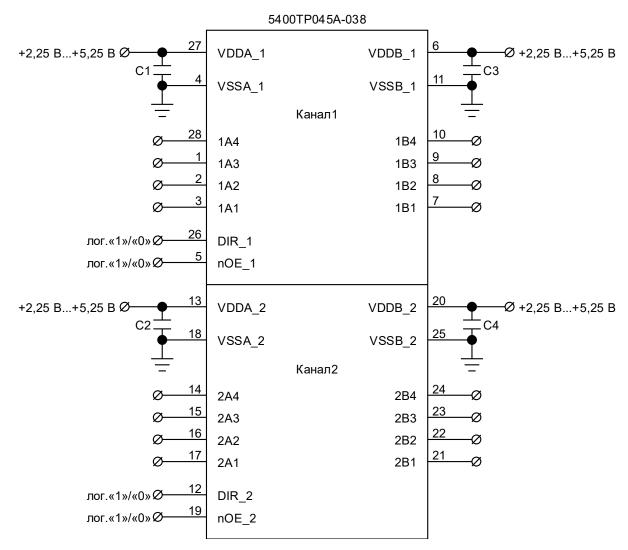


Рисунок 15. Рекомендуемая схема применения

Примечание:

Если используется один канал, то выводы VDDA, VSSA, VDDB, VSSB, A1–A4, B1–B4, DIR, nOE другого канала подключить к VSSA, VSSB используемого канала.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Описание функционирования микросхемы

Микросхема представляет собой транслятор цифровых уровней и может работать как двухканальный 4-разрядный преобразователь уровней сигналов, так и как одноканальный 8-разрядный преобразователь. Каждый канал имеет собственный вывод питания, порты ввода/вывода (А1...А4, В1...В4) и сигналы управления nOE и DIR.

Важно! Входные уровни сигналов управления nOE и DIR должны соответствовать уровню питания порта A.

Входы портов доопределены до уровня логического «0» или «1». Для этого используется резистор в обратной связи 300 кОм (триггерная петля). Если перестать подавать сигнал на вход, на нем сохранится последнее логическое состояние. Неиспользуемые входы разрядов каналов допускается оставлять не подключенными.

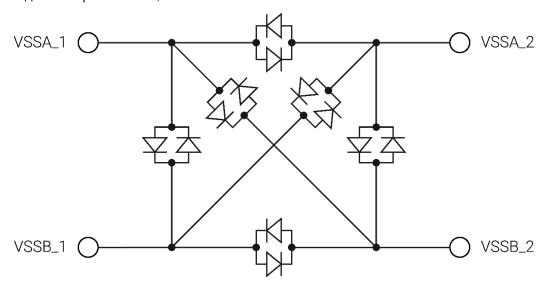
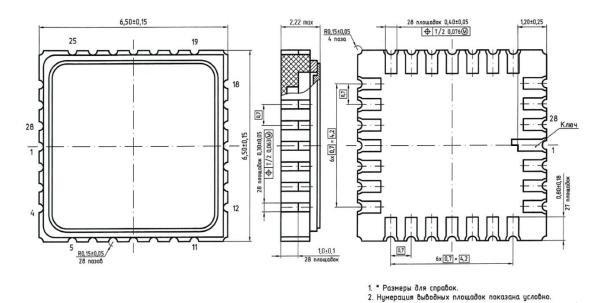

Последовательность включения/отключения напряжений питания или входов микросхемы не влияет на работоспособность. В микросхеме реализована функция «холодный резерв»: при подключении резервные элементы не несут нагрузки и не влияют на работу основных компонентов.

Таблица 6. Таблица истинности работы микросхемы

Выводы управления		Порты		Режим
nOE	DIR	Α	В	L GWMM
0	0	Выход	Вход	Передача данных В → А
0	1	Вход	Выход	Передача данных А → В
1	Х	Z	Z	Передача запрещена

- Х любое логическое состояние на выводе;
- Z высокоимпедансное состояние;
- 1 высокий уровень сигнала;
- 0 низкий уровень сигнала.


Выводы VSSA_1, VSSB_1, VSSA_2, VSSB_2 (отрицательное напряжение питания) объединены между собой через диоды. Это означает, что разница между выводами VSSA_1, VSSB_1, VSSA_2, VSSB_2 не должна превышать 0,3 В.

Pисунок 16. Соединение выводов VSSA_1, VSSB_1, VSSB_2 внутри микросхемы

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Габаритный чертеж

2. Hypepudus osiooonsis Historiaana gesoono.

Рисунок 17. Габаритный чертеж корпуса МК 5123.28-1.01 (размеры в мм)

Информация для заказа

Обозначение	Маркировка	Корпус	Температурный диапазон		
Категория качества «ВП»					
5400ТР045А-038 АЕНВ.431260.237ТУ карта заказа КФЦС.431260.003-038Д16	045A-038	MK 5123.28-1.01	−60°C+125°C		
Категория качества «ОТК»					
К5400ТР045А-038 КФЦС.431000.001ТУ КФЦС.431260.001.01СП карта заказа КФЦС 431260.003.01-038Д16	K045A-038	MK 5123.28-1.01	−60°C+125°C		

Микросхемы категории качества «ВП» маркируются ромбом.

Микросхемы категории качества «ОТК» маркируются буквой «К».

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.237ТУ, карта заказа КФЦС.431260.003-038Д16.

Лист регистрации изменений

27.03.2024	1.0	
	1.0	Исходная версия
30.06.2025	2.0	Добавлен пункт «Эквивалентные схемы»: — добавлены рисунки 3, 4; Обновлен пункт «Временные диаграммы»: — обновлена таблица 4; — обновлен рисунок 5. Обновлен пункт «Типовые характеристики»: — обновлен рисунок 7.
-		