Отечественный 24-разрядный 1-Квыб/с дельта-сигма АЦП компании «Дизайн Центр «Союз»

Всеволод ЭННС, Артем МАЛЫГИН, Игорь КОРЕПАНОВ, mail@dcsoyuz.ru В статье приводится номенклатура освоенных АЦП, выпускаемых компанией «Дизайн Центр «Союз». Подробно рассматриваются основные характеристики и особенности прецизионного двухканального 24-разрядного ΔΣ АЦП 5400ТР045А-025.

Союзает развивать серию отечественных АЦП различной архитектуры. Все микросхемы соответствуют критериям «Интегральная схема первого уровня» согласно 719-му Постановлению Правительства РФ от 17.07.2015 г. (разработка структуры, электрической схемы, топологии, программного обеспечения, изготовление пластин с кристаллами и их измерение, сборка кристаллов в корпуса, измерение и испытание интегральной схемы осуществляется на территории РФ).

Перечень освоенных микросхем АЦП и их краткие характеристики приведены в табл. 1.

- Рассмотрим подробнее параметры прецизионного $\Delta\Sigma$ АЦП 5400 ТР045 А-025 (рис. 1).
- Основные характеристики:
- разрядность: 24 бит;
- два канала преобразования;
- частота дискретизации:
- 16 выб/с...1 Квыб/с;
- интегральная нелинейность: 10 ppm;
- встроенный усилительный каскад с КУ = 2; 4; 8; 16;
- напряжение смещения: 350/КУ мкВ;

- соотношение сигнал/шум (SNR): 100 дБ;
- коэффициент подавления синфазной составляющей (CMRR): 106 дБ;
- коэффициент подавления помех по питанию (PSRR): 70 дБ;
- размах полной шкалы: 1,0-5,0 В;
- частота внутреннего генератора: 1,024 МГц;
- встроенный источник опорного напряжения: 2,5 В;
- напряжение питания ядра: 5,0 В ±5%;
- напряжение питания периферийной части: 2,5–5,0 В;
- ток потребления: 1,4 мА.

Мультиплексор

В микросхеме реализован двухканальный мультиплексор для дифференциального входного сигнала. В качестве входного напряжения можно также выбрать канал опорного напряжения для калибровки полной шкалы.

Для улучшения точности измерения в микросхеме можно выбирать полярность входного сигнала. Эту настройку можно использовать для прецизионных измерений с очень низким дрейфом смещения. Меняя

полярность входного сигнала и усредняя результаты оцифрованного сигнала с учетом знака, можно подавить все смещения и низкочастотные дрейфы с точностью до уровня шумов.

Усилительный каскад

Встроенный усилительный каскад состоит из двух ОУ (У1 и У2) и программируемых резисторов для установки коэффициента усиления (рис. 2). Коэффициент усиления (КУ) настраивается с помощью конфигурационного регистра на значения 2, 4, 8, 16. Возможно также отключение усилителя для расширения диапазона входного сигнала.

В табл. 2 представлены значения размаха полной шкалы для разных КУ при опорном напряжении 2,5 В.

САРР и САРN – положительный и отрицательный выходы усилителя. Для предотвращения искажений в импульсах модулятора между выводами рекомендуется установить конденсатор емкостью 4,7 нФ, который выполняет функцию аналогового фильтра.

У усилителя есть строгие ограничения на диапазон входного напряжения: положительное и отрицательное абсолютное значение входного напряжения должно соответствовать определенному диапазону:

$$V_{VSSA} + 0.3 + |V_{IN}| \cdot (KY - 1)/2 < V_{INP}, V_{INM}$$

 $V_{INP}, V_{INM} < V_{VDDA} - 0.3 - |V_{IN}| \cdot (KY - 1)/2,$

где V_{IN} – дифференциальное входное напряжение ($V_{IN} = V_{INP} - V_{INM}$); V_{INP} , V_{INM} – абсолютное значение входного напряжения; V_{VSSA} , V_{VDDA} – напряжение питания; КУ – коэффициент усиления.

Связь между входом и выходом усилительного каскада представлена на рис. 3. Для стабильной работы выходное напряжение должно находиться в пределах (V_{VSSA} + 0,3)... (V_{VDDA} - 0,3) В.

Таблица 1. Перечень освоенных микросхем АЦП и их краткие характеристики исло разр 5400 TP045 A-001 послеловательного приближения 12 0.5 2 5.0 5400 TP045 A-014 12 0,5 8 5,0 последовательного приближения 5400 TP045 A-036 последовательного приближения 16 0.1 8 5.0 5400 TP045 A-049 последовательного приближения 18 0,2 1 5,0 5112 HB035 конвейерная 14 50 1 3,3 5400 TP015-005 14 конвейерная 4 1 3,3 5400 TP045 A-025 24 0.001 2 5.0 сигма-дельта

Применение встроенного усилителя позволяет уменьшить шум, приведенный ко входу (рис. 4). Шумовые характеристики АЦП для различных коэффициентов усиления и частоты дискретизации приведены в табл. 3.

ΔΣ-модулятор

В микросхеме реализован ΔΣ-модулятор 2-го порядка, который оцифровывает входное аналоговое напряжение с частотой дискретизации $f_{MOD} = f_{CLK}/4 = 256 \ \kappa \Gamma \mu$ и преобразует в однобитовый поток данных.

Тэблица 2 Размах полной шкалы АШП

Цифровой фильтр АЦП получает однобитовый поток данных модулятора, осуществляет фильтрацию и децимацию для получения окончательного результата преобразования.

Фильтр sinc состоит из двух каскадов (рис. 5): первый каскад – фильтр типа sinc⁵ 5-го порядка с коэффициентом децимации 256; второй каскад – фильтр sinc³ с переменным коэффициентом децимации (4, 16, 64). Настройка цифрового фильтра осуществляется с помощью конфигурационного регистра.

Общая характеристика фильтра определяется уравнением:

V_{VSSA} + 0,3 B

V_{VSSA}

$$\mathbf{H}_{(f)} = \left| \mathbf{H}_{(\operatorname{sinc}^{3})}(f) \right| \cdot \left| \mathbf{H}_{(\operatorname{sinc}^{3})}(f) \right| = \left| \frac{\sin \left[\frac{4\pi f A}{f_{\operatorname{CLK}}} \right]}{A \sin \left[\frac{4\pi f}{f_{\operatorname{CLK}}} \right]} \right|^{2} \cdot \left| \frac{\sin \left[\frac{1024\pi f B}{f_{\operatorname{CLK}}} \right]}{B \sin \left[\frac{1024\pi f}{f_{\operatorname{CLK}}} \right]} \right|^{2}$$

где f – частота сигнала; f $_{\rm CLK}$ = 1024 кГц – частота внутреннего генератора; А = 256 - коэффициент децимации; В = 4, 16, 64 – переменный коэффициент децимации.

Настройка параметров цифрового фильтра позволяет находить оптимальный баланс между разрешением, временем преобразования и подавлением помех.

Коэффициент усиления, В/В	Размах полной шкалы, В		
1 (без усиления)	±2,5		
2	±1,25		
4	±0,625		
8	±0,312		
16	±0,156		

Рис. 2. Структурная схема усилительного каскада

the first A second should be						
Частота выборок, Гц	Усиление					
	1	2	4	8	16	
1000	16,928	7,484	3,723	2,536	2,220	
	(100,434)	(46,343)	(21,458)	(14,715)	(12,144)	
250	6,814	3,965	2,076	1,397	1,146	
	(36,359)	(22,054)	(11,399)	(7,823)	(6,724)	
62,5	3,511	1,805	1,088	0,769	0,583	
	(19,073)	(10,879)	(5,960)	(3,874)	(3,129)	
15,625	1,888	1,0470	0,465	0,3814511	0,269	
	(10,133)	(5,513)	(2,235)	(1,863)	(1,471)	

Рис. 4. Шум АЦП при нулевом входном значении (при КУ = 16; внешнее опорное напряжение: 2,5 В; скорость преобразования: 15,625 Гц)

V_{OUTM}= V_{INM} - V_{IN} (КУ - 1)/2 Рис. З. Диапазон входа/выхода усилителя

Тэблицэ З Шумовые хэрэктеристики

В табл. 4 указано время задержки фильтра после запуска преобразования до получения корректных данных в зависимости от частоты дискретизации.

На рис. 6 приведена временная диаграмма готовности данных для единичного преобразования. Для непрерывного режима (рис. 7–8) корректные данные появляются на 5-й сигнал DRDY (для частоты дискретизации 1 кГц) и на 3-й сигнал DRDY (для частоты дискретизации 250; 62,5; 15,625 Гц).

Источник опорного напряжения

В микросхеме реализован встроенный ИОН на 2,5 В, который рекомендуется ис-

пользовать в методе измерения соотношений (в ратиометрических измерениях).

Для абсолютных измерений рекомендуется применять внешний малошумящий источник опорного напряжения.

Последовательный интерфейс

Взаимодействие с управляющим устройством осуществляется через последовательный SPI интерфейс. Поддерживаются два режима работы последовательного интерфейса:

- режим 1 (CPOL = 0, CPHA = 1);
- режим 3 (CPOL = 1, CPHA = 1).

Для управления микросхемой предусмотрены четыре команды: чтение и запись

Таблица 4. Время задержки фильтра после запуска первого преобразования

Скорость выдачи данных, выб/с	Задержка преобразования t _d , мс
1000	5,0
250	12,7
62,5	47,9
15,625	188,5

конфигурационного регистра, старт преобразования, сброс микросхемы до значений по умолчанию.

Для согласования уровней цифровых сигналов с управляющим устройством в микросхеме реализован вывод питания периферийной части с допустимым диапазоном напряжения 2,5–5,0 В.

Микросхема освоена в компактном 28-выводном металлокерамическом корпусе МК 5123.28–1.01 размерами 6,5×6,5 мм (рис. 9) и рассчитана для работы в широком температурном диапазоне –60...125 °С.

АЦП также предназначен для промышленных применений в металлополимерном корпусе QFN-28 размерами 5,0×5,0 мм (рис. 10).

Для оценки характеристик микросхемы разработана демонстрационная плата КФЦС. 441461.230, которая отражает основные возможные режимы работы микросхе-

мы. Плата доступна по предварительному заказу. Для ускорения начала работы с микросхемой разработан скетч для аппаратнопрограммной платформы Arduino. В скетче реализованы все команды управления АЦП: считывание данных преобразования, запись и чтение данных конфигурационного регистра АЦП, сброс микросхемы до значений по умолчанию.

Микросхемы обладают высокой надежностью (наработка до отказа – свыше 100 000 ч) и стойкостью к СВВФ, включая факторы космического пространства (стойкость к ТЗЧ не менее 60 МэВ·см²/мг).

Рис. 10. Внешний вид микросхемы 5400ТР045В-025

АЦП доступны для заказа с приемкой «ВП» и «ОТК». Плановый срок серийного освоения и подачи заявки на включение в Перечень ЭКБ – I кв. 2025 г. Также проводятся мероприятия по включению микросхемы 5400ТР045В-025 в каталог промышленной продукции ГИСП.

Микросхемы высоконадежных АЦП разработаны с использованием отечественных материалов (включая полупроводниковые кристаллы), вероятность срыва поставок из-за санкционных рисков отсутствует.

Применение встроенного усилительного каскада, смена полярности входного сигна-

Рис. 11. Демонстрационная плата КФЦС.441461.230

ла с последующим усреднением результатов преобразования и возможность выбора канала опорного напряжения для калибровки полной шкалы улучшает точностные характеристики микросхемы.

Наличие встроенного ИОН и генератора тактового сигнала позволяет уменьшить количество требуемых внешних компонентов.

Микросхема освоена в двух корпусах: в металлокерамическом для жестких условий эксплуатации (в том числе для разработки специальной аппаратуры) и в пластиковом для промышленного применения.

