

Версия 1.0 5400ТР125-015

Приложение А

Оглавление

Состав отладочного комплекта для микросхемы 5400ТР125-015	2
Описание отладочной платы	
Подготовка к работе с отладочным комплектом	
Описание DCSProg-6	
Основные разделы DCSProg-6	5
Помощь	
Микросхема	
Электрическая схема отладочной платы КФЦС.441461.348	
Программирование микросхемы в режиме SOFT	8
Программирование микросхемы в режиме HARD	10
Чтение энергонезависимой памяти микросхемы	13
Обновление программного обеспечения	14
Ошибки и их решение	15
Лист регистрации изменений	18

Состав отладочного комплекта для микросхемы 5400ТР125-015

Состав отладочного комплекта КФЦС.441461.349 для микросхемы 5400ТР125-015:

- Отладочная плата КФЦС.441461.348 (Рисунок 1);
- USB-кабель для подключения отладочной платы к ПК;
- Блок питания отладочной платы;
- ПО DCSProg-6 для программирования микросхемы.

Описание отладочной платы

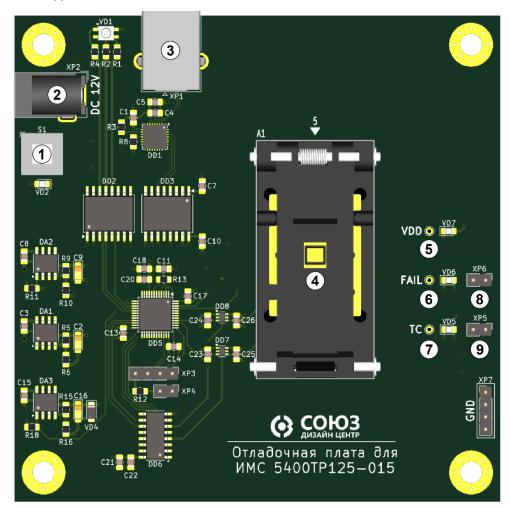


Рисунок 1. Отладочная плата КФЦС.441461.348

- 1 **(\$1)**: Кнопка включения питания.
- 2 (XP2): Разъём блока питания для подачи напряжения на плату.
- 3 (ХР1): Разъём для подключения платы к ПК.
- 4 (А1): Контактирующие устройство для установки микросхемы.
- 5 **(VDD)**: Тестовый выход для проверки напряжения питания микросхемы.
- 6 **(FAIL)**: Тестовый выход монитора работоспособности микросхемы.
- 7 (ТС): Тестовый выход термостата.
- 8 (**XP6**): Выводы для подключения выхода FAIL к внешним устройствам.
- 9 (XP5): Выводы для подключения выхода ТС к внешним устройствам.

Подготовка к работе с отладочным комплектом

- 1. Подключить блок питания к плате
- 2. Соединить плату с ПК с помощью USB-кабеля

Зайти в диспетчер устройств:

Для Windows 10 — нажмите по иконке поиска в панели задач и наберите «диспетчер устройств» в поле ввода, а после того, как нужный элемент будет найден, нажмите по нему ЛКМ для открытия.

Для Windows 7 и 8 – откройте пуск и введите в поле поиска фразу «диспетчер устройств», а после того, как нужный элемент будет найден, нажмите по нему ЛКМ для открытия.

Во вкладке «Порты (COM и LPT)» можно посмотреть какой COM-порт соответствует отладочной плате. В примере плата подключена к порту COM3.

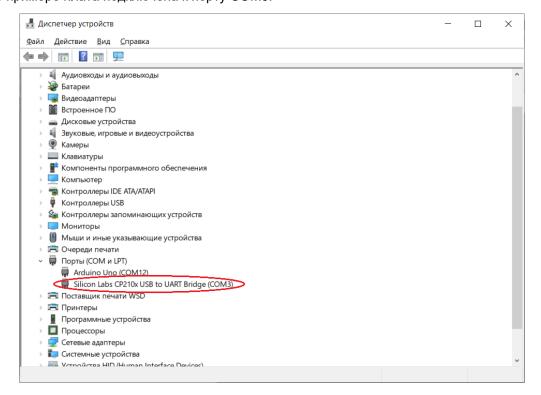


Рисунок 2. Диспетчер устройств

Если компьютер не распознает отладочную плату, то следует установить драйвер CP210x: загрузить архив CP210x_Windows_Drivers с сайта компании https://dcsoyuz.ru в разделе «Программное обеспечение», либо с сайта разработчика https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers.

Описание DCSProg-6

Программное обеспечение DCSProg-6 предназначено для программирования микросхемы.

Загрузить архив DCSProg-6 можно с сайта компании https://dcsoyuz.ru (раздел «Программное обеспечение»). Доступ к разделу «Программное обеспечение» предоставляется по запросу на электронную почту support@dcsoyuz.ru.

При распаковке архива используйте пути, содержащие только латинские буквы, цифры и символы, безопасные для файловых систем (например, C:\path\to\directory).

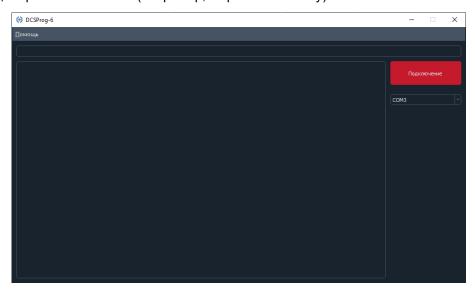


Рисунок 3. Внешний вид ПО при первом запуске

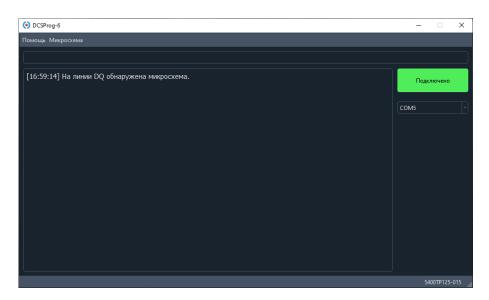


Рисунок 4. Внешний вид ПО при активном подключении отладочной платы

Основные разделы DCSProg-6

Помощь

• «Информация о отладочном комплекте» – позволяет узнать версию ПО DCSProg-6, отладочной платы, программатора, программы программатора и серийный номер программатора.

• «Обновить ПО» – обновление программного обеспечения программатора.

Микросхема

- «Программирование в SOFT» запись конфигурации микросхемы в энергозависимую память.
- «Программирование в HARD» запись конфигурации микросхемы в энергонезависимую память.
- «Чтение памяти» чтение конфигурации, записанной в энергонезависимую память.

Электрическая схема отладочной платы КФЦС.441461.348

Таблица 1. Перечень элементов отладочной платы

Обозначение элемента	Название/Тип	Номинал
A1	Контактирующее устройство LHZ-SOP6-1.5-01-00	_
C1, C4, C7, C10, C12, C13, C14, C17, C22C27	Конденсатор керамический 0805, Х7R, 50 В, 10%	0,1 мкФ
C2, C6, C9, C16	Конденсатор танталовый SMD A, 16 B, 10%	10 мкФ
C3, C8, C15, C18, C19, C21, C28	Конденсатор керамический 0805, X7R, 50 В, 10%	1 мкФ
C5, C11	Конденсатор керамический 0805, Х7R, 50 В, 10%	4,7 мкФ
C20	Конденсатор керамический 0805, Х7R, 50 В, 10%	10 нФ
DA1, DA2, DA3	Микросхема MIC39102YM	_
DD1	Микросхема CP2102N	_
DD2, DD3	Микросхема ADUM1401xRW	_
DD4	Микросхема 24АА02-ОТ	_
DD5	Микросхема STM32F302CBT	_
DD6	Микросхема 74HC595D	_
DD7, DD8	Микросхема SN74LVC1T45DCK	-
R1, R2, R21, R23, R24	Резистор 0805, 5%	620 Ом
R3	Резистор 0805, 5%	5,1 кОм
R4, R16	Резистор 0805, 5%	1 кОм
R5, R7	Резистор 0805, 5%	2 кОм
R6, R10	Резистор 0805, 5%	1,2 кОм
R8, R11, R13, R18	Резистор 0805, 5%	10 кОм
R9	Резистор 0805, 5%	3,6 кОм
R12, R14, R17, R19, R20, R22, R25	Резистор 0805, 5%	4,7 кОм
R15	Резистор 0805, 5%	6,49 кОм
S1	Кнопка KLS7-P8.5x8.5-1	_
VD1	Светодиод TO-3228BC-MRPBGHF	-
VD2, VD5, VD6, VD7	Светодиод FYLS-0805	_
VD3	Диод SMF12A	-
VD4	Диод SMF9.0A	
VD8	Диод BAT54S	_
VT1	Транзистор BC847	-
VT2	Транзистор ВС857	_
XP1	Разъем USB тип В розетка	_
XP2	Гнездо питания DS-261A	_
XP3, XP7	Вилка штыревая 2.54мм (PLS-4)	_
XP4, XP5, XP6	Вилка штыревая 2.54мм (PLS-2)	_

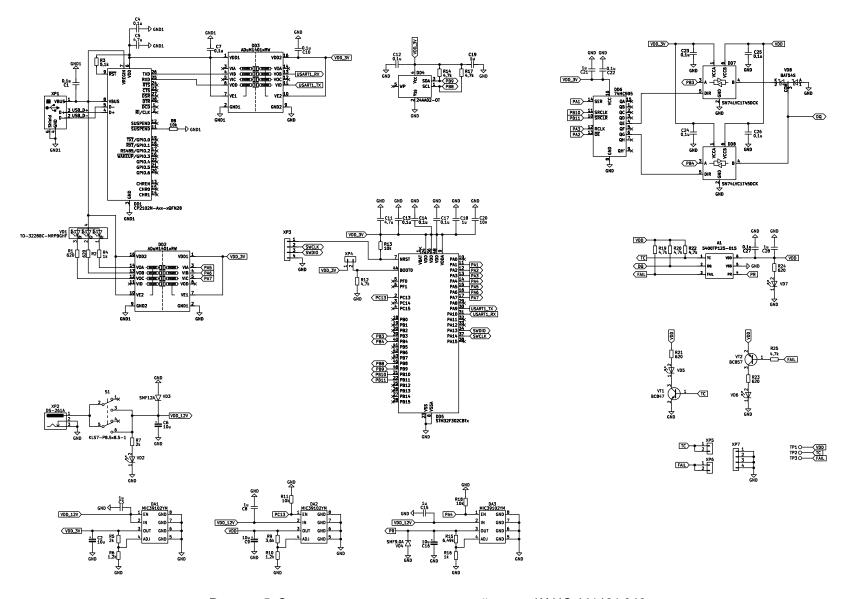


Рисунок 5. Электрическая схема отладочной платы КФЦС.441461.348

Версия 1.0

Программирование микросхемы в режиме SOFT

1. Нажмите «Микросхема» – «Программирование в SOFT», откроется окно «Запись в память», где нужно ввести значения TH, TL, POL (Рисунок 6, Рисунок 7).

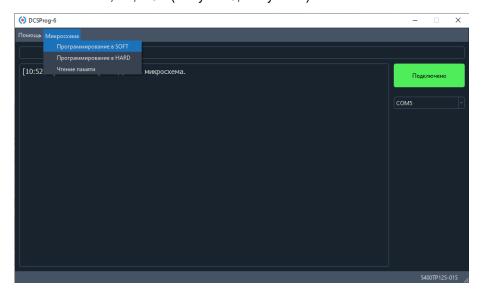


Рисунок 6. Программирование в SOFT

Примечание! При программировании микросхемы с помощью отладочного комплекта не нужно учитывать примечание на странице 9 спецификации. ПО DCSProg-6 само подстроит введенные значения, пользователь должен вводить необходимые ему значения порогов ТН и TL. Также ПО выдаст ошибку, если разница между введенными значениями порогов меньше необходимой.

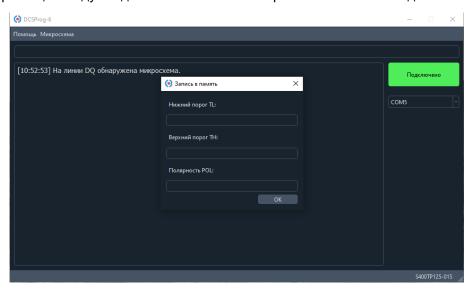


Рисунок 7. Окно ввода конфигурации микросхемы

2. После ввода значений TH, TL, POL нажмите кнопку «ОК» в окне «Запись в память», откроется окно подтверждения введенных значений с диаграммой работы микросхемы (Рисунок 8). Для подтверждения введенных данных и программирования микросхемы в режим SOFT нажмите «ОК», для возврата к предыдущему окну нажмите «Cancel».

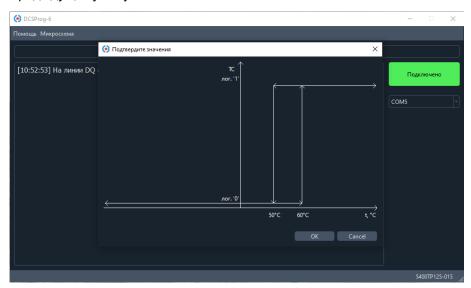


Рисунок 8. Подтверждения введенных значений

После успешного программирования в DCSProg-6 появится сообщение «Микросхема запрограммирована в режиме SOFT» (Рисунок 9).

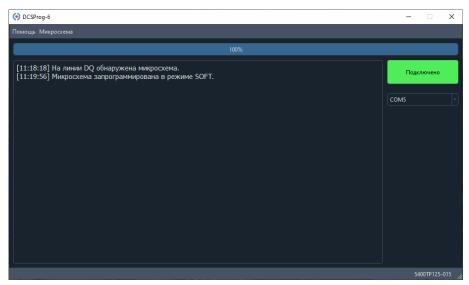


Рисунок 9. Сообщение об успешном программировании

Программирование микросхемы в режиме HARD

1. Нажмите «Микросхема» — «Программирование в HARD», откроется окно подтверждения программирования в режим HARD. Затем откроется окно «Запись в память», где нужно ввести значения TH, TL, POL (Рисунок 10 — Рисунок 12).

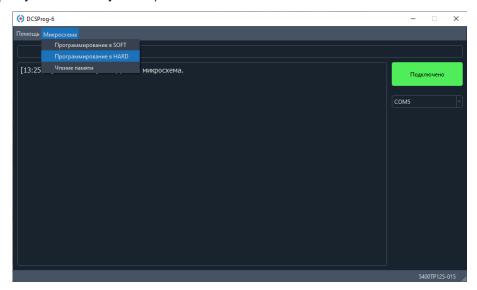


Рисунок 10. Программирование в HARD

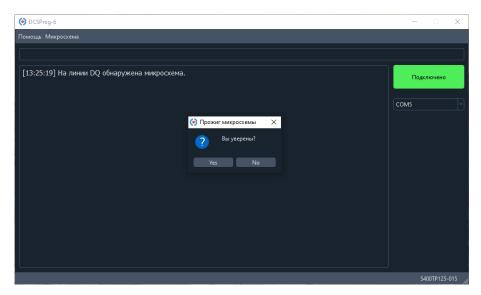


Рисунок 11. Подтверждение программирования в режим HARD

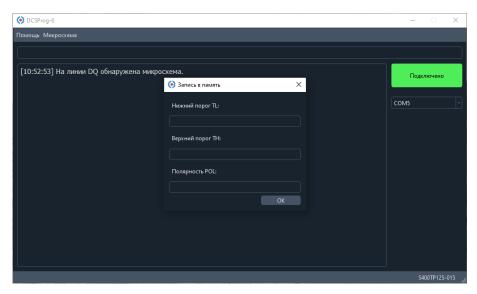


Рисунок 12. Окно ввода конфигурации микросхемы

2. После ввода значений ТН, TL, POL нажмите кнопку «ОК» в окне «Запись в память», откроется окно подтверждения введенных значений с диаграммой работы микросхемы (Рисунок 13). Для подтверждения введенных данных и программирования микросхемы в режим HARD нажмите «ОК», для возврата к предыдущему окну нажмите «Cancel».

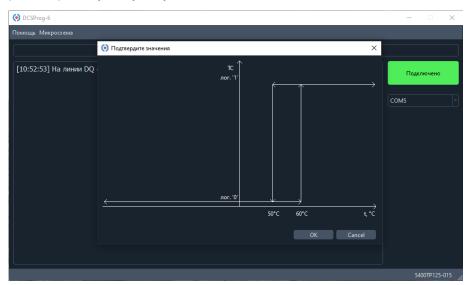


Рисунок 13. Подтверждения введенных значений

Важно! После записи конфигурации TH, TL, POL в энергонезависимую память (режим HARD) программирование микросхемы ни в режим SOFT, ни в режим HARD не будет доступно. Перед прожигом окончательной конфигурации проведите все необходимые тесты с микросхемой, записывая конфигурацию в режиме SOFT.

После успешного программирования в DCSProg-6 появится сообщение «Микросхема запрограммирована в режиме HARD» (Рисунок 14).

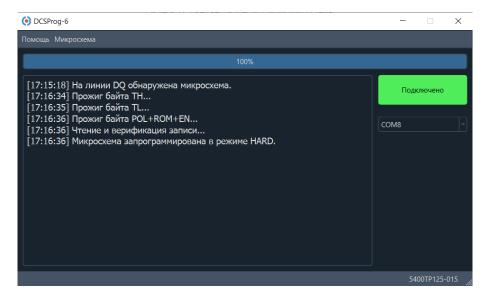


Рисунок 14. Сообщение о успешном программировании

Чтение энергонезависимой памяти микросхемы

1. Нажмите «Микросхема» – «Чтение памяти» (Рисунок 15).

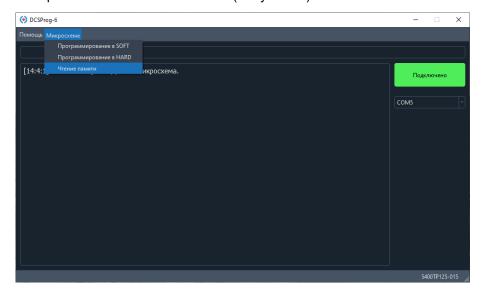


Рисунок 15. Чтение энергонезависимой памяти микросхемы

2. В окне DCSProg-6 отобразятся значения параметров TH, TL, POL записанные в энергонезависимую память микросхемы (Рисунок 16).

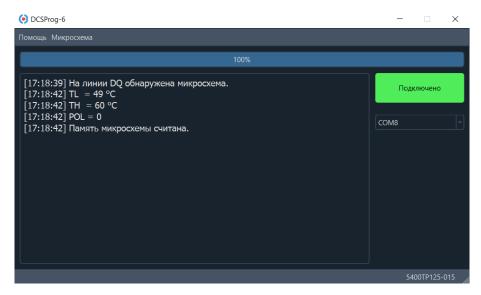


Рисунок 16. Чтение энергонезависимой памяти микросхемы

Обновление программного обеспечения

Текущую версию программного обеспечения можно узнать через меню «Помощь» – «Информация об отладочном комплекте», пункт «Версия программы».

Рисунок 17. Отображение информации об отладочном комплекте

Для обновления необходимо воспользоваться опцией «Помощь» — «Обновить ПО». Процесс обновления выполняется с использованием файла prog_firmware.hex, который должен находиться в корневой директории программы DCSProg-6. Если файл отсутствует или имеет некорректное имя, в диалоговом окне будет отображено сообщение об ошибке обновления.

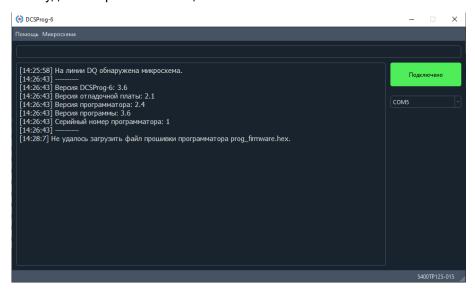


Рисунок 18. Сообщение о неудачном обновлении

Как правило, установленная версия программы актуальна и обновление требуется лишь в случае критических сбоев. Файлы для обновления предоставляются технической поддержкой по запросу на электронную почту. support@dcsoyuz.ru

Важно! Во время обновления прошивки запрещено закрывать приложение DCSProg-6, отключать питание отладочного комплекта или отключать отладочный комплект от ПК. Это приведет к некорректной загрузке ПО. При этом после некорректного обновления повторно загрузить файл обновления будет невозможно. В случае ошибки обновления в DCSProg-6 будет отображена ошибка. Свяжитесь с нами по почте support@dcsoyuz.ru если вы столкнулись с ошибкой обновления.

Ошибки и их решение

«Нет связи с программатором. Восстановление...»

Решение: проверьте питание отладочного комплекта. Светодиод рядом с кнопкой S1 должен светиться, указывая на наличие питания. Убедитесь, что блок питания и кабель исправны и не повреждены. Отключите питание отладочного комплекта, затем повторно подключите блок питания и включите устройство.

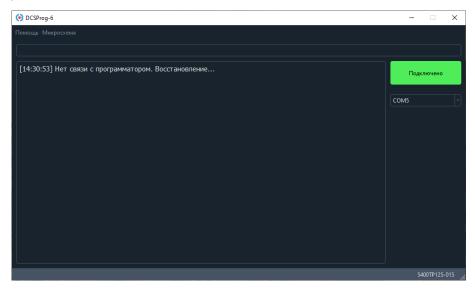


Рисунок 19. Ошибка отсутствия связи с программатором

«Возникла проблема с СОМ-портом. Необходимо переподключение»

Решение: убедитесь, что выбран правильный СОМ-порт. Проверьте состояние кабеля подключения к ПК. Попробуйте повторно подключить отладочную плату к компьютеру или использовать другой USB-порт. Откройте «Диспетчер устройств» и проверьте корректную работу СОМ-порта и его номер. Убедитесь, что в DCSProg-6 выбран тот же номер порта.

Если СОМ-порт не определяется должным образом, попробуйте установить или переустановить драйвера CP210x. Их можно скачать с сайта компании: <a href="decouple-color: blue-color: decouple-color: blue-color: blue

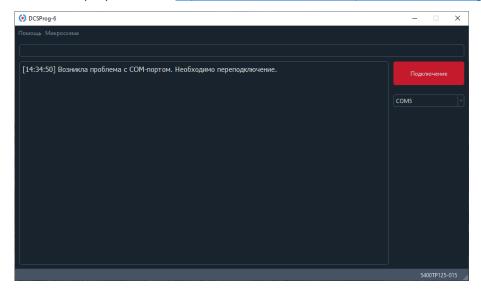


Рисунок 20. Ошибка подключения СОМ-порта

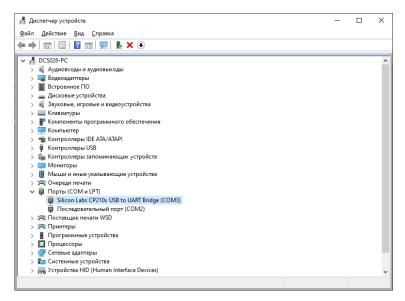


Рисунок 21. Отображение подключенного программатора в диспетчере устройств

«Не удалось загрузить файл прошивки программатора prog_firmware.hex»

Решение: проверьте, что файл prog_firmware.hex расположен в корневой директории DCSProg-6. Убедитесь, что имя файла и его расширение указаны корректно.

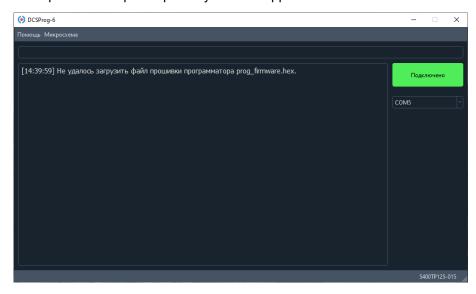


Рисунок 22. Ошибка загрузки файла обновления

«Произошла ошибка во время обновления прошивки программатора. Обратитесь в тех. поддержку.»

Эта ошибка возникает при обновлении ПО программатора, если во время процесса отключилось питание отладочного комплекта, он был отсоединен от ПК или программа DCSProg-6 была закрыта.

Если ошибка появилась в DCSProg-6, повторные попытки обновления с помощью кнопки «Обновить ПО» не сработают. Пожалуйста, свяжитесь с нами по электронной почте support@dcsoyuz.ru, прежде чем предпринимать какие-либо действия.

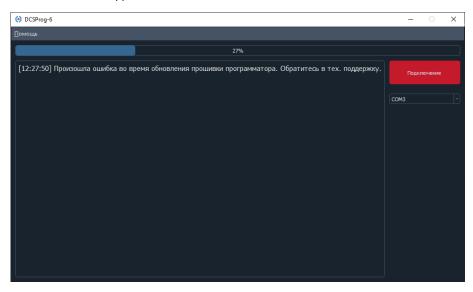


Рисунок 23. Ошибка обновления прошивки программатора

Лист регистрации изменений

13.11.2025 1.0 Исходная версия	Дата	Версия	Изменения
			Исходная версия