

Интегральный температурный компаратор

Версия 1.1 **5400ТР125-015**

Основные особенности

- Точность измерения температуры:
 в диапазоне от -60°С до -10°С не более 3,0°С;
 в диапазоне от -10°С до +60°С не более 2,0°С;
 в диапазоне от +60°С до +125°С не более 3,0°С;
- Тип выхода термостата открытый сток;
- Настраиваемые пользователем пороги срабатывания и полярность;
- Напряжение питания 3,3 В ... 5,0 В;
- Ток потребления:
 1,8 мА при VDD = 3,3 В;
 2,7 мА при VDD = 5,0 В;
- Температурный диапазон от –60°C до +125°C.

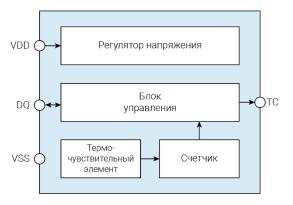


Рисунок 1. Структурная схема

Общее описание

Температурный компаратор 5400TP125-015 предназначен для контроля температуры окружающей среды. Микросхема выполнена на базе радиационно-стойкого аналого-цифрового БМК 5400TP12 по технологии КНИ.

Программирование значения температурных порогов срабатывания и полярности осуществляется пользователем по 1-Wire интерфейсу. Тип выхода компаратора – открытый сток.

ГГ – год выпуска НН – неделя выпуска

Рисунок 2. Внешний вид микросхемы 5400TP125-015

Микросхема выполнена в 6-ти выводном металлокерамическом корпусе 5221.6-1.

Электрические параметры микросхемы

Таблица 1. Электрические характеристики (температурный диапазон от -60°C до +125°C)

Попомоть отнишие измерения	Норма параметра			
Параметр, единица измерения	не менее	типовое	не более	
Точность измерения температуры, °С	-2,0 ⁽¹⁾ -3,0	±1,0	+2,0 ⁽¹⁾ +3,0	
Ток потребления в режиме преобразования ⁽³⁾ , мА		1,8 ⁽²⁾ 2,7	5,6 ⁽²⁾ 6,0	
Ток потребления в режиме ожидания ⁽⁴⁾ , мА		0,9 ⁽²⁾ 1,4	3,0	
Напряжение низкого уровня выходных цифровых сигналов (DQ, TC), В		0	0,5	

Примечание:

- 1) норма на параметр в температурном диапазоне от -10°C до +60°C
- 2) при напряжении питании VDD = 3,15 B
- 3) собственный ток потребления микросхемы после программирования порогов срабатывания и полярности по рекомендуемой схеме применения (Рисунок 3)
- 4) ток потребления при настройке микросхемы в режиме SOFT при отсутствии обращения к микросхеме

Электростатическая защита

Микросхема имеет встроенную защиту от электростатического разряда до 2000 В по модели человеческого тела. Требует мер предосторожности.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Режимы эксплуатации

Таблица 2. Предельно-допустимые и предельные режимы эксплуатации

Параметр, единица измерения	<u>-</u>	допустимый ким	Предельный режим		
	не менее	не более	не менее	не более	
Напряжение питания (VDD), В	3,15	5,25	-0,3	5,35	
Напряжение высокого уровня входных цифровых сигналов (DQ), В	VDD-0,7 ⁽¹⁾	VDD+0,3 ⁽²⁾	-0,3	VDD+0,5 ⁽³⁾	
Напряжение низкого уровня входных цифровых сигналов (DQ), В	-0,3	0,6	-0,3	VDD+0,5 ⁽³⁾	
Напряжение программирования (PR), B	9,2	9,4	-0,3	9,5	
Нагрузочная способность (DQ, TC), мА	-	1,5	-	3,0	
Температура эксплуатации, °С	-60	+125	-60	+150	

Примечание:

- 1) не менее 3,15 В
- 2) не более 5,25 В
- 3) не более 5,35 В

Конфигурация и функциональное описание выводов

Таблица 3. Функциональное описание выводов

№ вывода	Тип вывода	Наименование вывода	Назначение вывода
1	DO	TC	Выход термостата. Тип выхода – открытый сток
2	DI/DO	DQ	Информационный вход/выход
3	_	TECH	Технологический вывод (оставить в обрыве)
4	Al	PR	Вывод записи памяти
5	PWR	VSS	Общий вывод
6	PWR	VDD	Вывод напряжения питания

Примечание:

DI – цифровой вход

DO – цифровой выход

AI – аналоговый вход

PWR – вывод напряжения питания

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Рекомендуемая схема применения

Таблица 4. Таблица внешних компонентов

Компонент	Номинал
R1	4,7 кОм
C1	1,0 мкФ

Конденсаторы либо высокочастотные керамические, либо сдвоенные. В случае сдвоенных конденсаторов, один из них обязательно должен быть высокочастотный керамический емкостью не менее 10 нФ. Шунтирующие конденсаторы должны располагаться на плате в непосредственной близости к соответствующим выводам микросхемы.

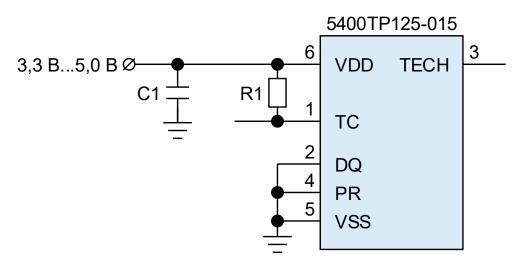


Рисунок 3. Рекомендуемая схема применения после программирования

Примечание:

Программирование значения температурных порогов срабатывания (TH, TL) и полярности (POL) осуществляется пользователем по 1-Wire интерфейсу. Временная диаграмма программирования приведена в пункте «Программирование микросхемы, режим «HARD».

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Описание функционирования микросхемы

Микросхема 5400ТР125-015 – интегральный температурный компаратор.

Выход микросхемы переключается в зависимости от порогов срабатывания TH и TL, тип выхода – открытый сток. Настройка порогов срабатывания и полярности термостата производится через 1-Wire интерфейс.

Температурный компаратор имеет два режима работы:

- режим отладки («SOFT»). После включения питания необходимо каждый раз производить настройку микросхемы;
- режим финальной конфигурации («HARD»). После программирования микросхема готова к работе при включении питания.

Работа 1-Wire интерфейса

Взаимодействие управляющего микроконтроллера с микросхемой осуществляется через 1-Wire интерфейс. Это низкоскоростной двунаправленный последовательный протокол обмена данными, использующий всего один сигнальный провод – DQ.

Типы сигналов, определенные однопроводным интерфейсом: импульс сброса, импульс присутствия, запись лог. «0», запись лог. «1», чтение лог. «0», чтение лог. «1».

Принцип формирования сигналов во всех случаях одинаковый. В начальном состоянии шина DQ с помощью резистора подтянута к VDD. Тип выхода — открытый сток. Микроконтроллер (ведущее устройство) устанавливает шину DQ в состояние лог. «0» на определенное время, затем «отпускает» ее и ждет ответ от температурного компаратора (ведомое устройство).

Изначально микросхема находится в ожидании импульса сброса от микроконтроллера. Очень важно следовать за следующей последовательностью операций каждый раз, когда необходимо обратиться к микросхеме, поскольку она не будет отвечать, если любые шаги в последовательности отсутствуют или применены не в том порядке.

Инициализация

Взаимодействие микроконтроллера с температурным компаратором начинается с инициализации. Последовательность инициализации состоит из импульса сброса и импульса присутствия. Микроконтроллер на время $t1 \ge 480$ мкс устанавливает шину DQ в состояние лог. «0». Микросхема принимает импульс сброса и через время t2 = 15 - 60 мкс отвечает микроконтроллеру импульсом присутствия: устанавливает шину DQ в состояние лог. «0» на время t3 = 60 - 240 мкс. Импульс присутствия позволяет ведущему устройству узнать, что ведомое устройство подключено к шине DQ и готово к работе.

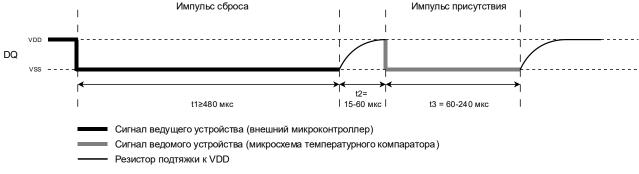


Рисунок 4. Временная диаграмма инициализации микросхемы

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Таблица 5. Временные параметры инициализации микросхеми

Попомотр одинице измерения	Норма параметра			
Параметр, единица измерения	не менее	не более		
Время импульса сброса t ₁ , мкс	480	_		
Время паузы t ₂ , мкс	15	60		
Время импульса присутствия t ₃ , мкс	60	240		

Запись/чтение данных

После обнаружения импульса присутствия микроконтроллер может передать команду. Запись/чтение одного бита данных выполняется в течение фиксированного интервала времени (слот). Для записи лог. «0» микроконтроллер устанавливает шину DQ в состояние лог. «0» на время $t_4 = 60-120$ мкс. Запись следующего бита осуществляется через время $t_5 \ge 4$ мкс. Для записи лог. «1» микроконтроллер устанавливает шину DQ в состояние лог. «0» на время $t_6 = 4-12$ мкс. Запись следующего бита данных осуществляется через время $t_7 \ge 64$ мкс.

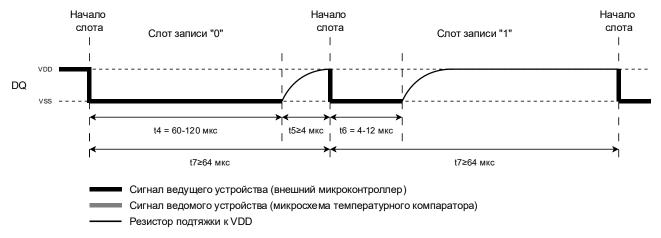


Рисунок 5. Временная диаграмма записи данных

Таблица 6. Временные параметры записи микросхемы

Попомоти одиница изменения	Норма параметра			
Параметр, единица измерения	не менее	не более		
Время записи лог. «0» t ₄ , мкс	60	120		
Время паузы после записи лог. «0» t₅, мкс	4,0	_		
Время записи лог. «1» t ₆ , мкс	4,0	12		
Время слота записи t ₇ , мкс	64	_		

Температурный компаратор является ведомым устройством и может передавать данные, только когда микроконтроллер формирует на шине DQ слоты чтения.

Для формирования слота чтения микроконтроллер устанавливает шину DQ в состояние лог. «0» на время t_8 = 2 – 10 мкс, а затем «отпускает» ее, передавая управление датчику. Если микросхема передает лог. «0», то шина DQ остается в состоянии лог. «0» на время t_9 = 15 – 60 мкс. Если микросхема передает лог. «1», то на шине DQ устанавливается состояние лог. «1».

Микроконтроллер может считывать данные датчика через t_{10} = 15 мкс после начала слота чтения.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

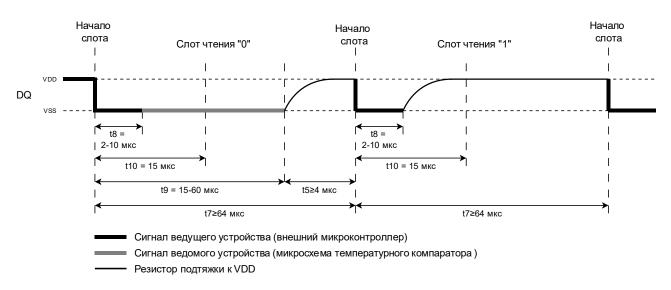


Рисунок 6. Временная диаграмма чтения данных

Таблица 7. Временные параметры чтения микросхемы

Парамотр одинина изморония	Норма параметра				
Параметр, единица измерения	не менее	типовое	не более		
Время паузы после записи лог. «0» t5, мкс	4,0				
Время длительности слота чтения t ₇ , мкс	64	_	_		
Время установки микроконтроллером шины DQ в состояние лог. «0» t ₈ , мкс	2,0	-	10		
Время при передаче микросхемой лог. «0» t ₉ , мкс	15	-	60		
Время считывания данных микросхемы микроконтроллером t ₁₀ , мкс	_	15	_		

Доступные команды

Write_mem (код команды 0х18) — Запись в память. После подачи команды следует: задать 8-ми битный адрес строки (младший бит вперед, Таблица 8); передать 8 бит данных в данную строку.

Read_mem (код команды 0х99) — Чтение памяти. После подачи команды следует: задать 8-ми битный адрес строки (младший бит вперед, Таблица 8); сформировать 8 слотов чтения данных.

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Настройка микросхемы, режим «SOFT»

Температурный компаратор можно использовать в режиме «SOFT». При этом после отключения напряжения питания записанные настройки сбросятся, и микросхема вернется в начальный режим работы. При включении питания необходимо заново производить настройку микросхемы.

Для настройки порогов срабатывания и полярности микросхемы необходимо:

- 1) Произвести инициализацию (см. пункт «Инициализация», Рисунок 5);
- 2) Подать команду Write_mem (код команды 0x18) Запись в память;
- 3) Задать 8-ми битный адрес строки младшим битом вперед (Таблица 8);
- 4) Задать 8 бит данных (Таблица 8);
- 5) Повторить пункты 1– 4 для других адресов микросхемы.

Таблица 8. Организация пространства памяти

Апрос	Бит							
Адрес	7	6	5	4	3	2	1	0
0x25		TH						
0x26		TL						
0x27	POL	ROM	0	1	0	0	0	1

Описание доступных настроек микросхемы

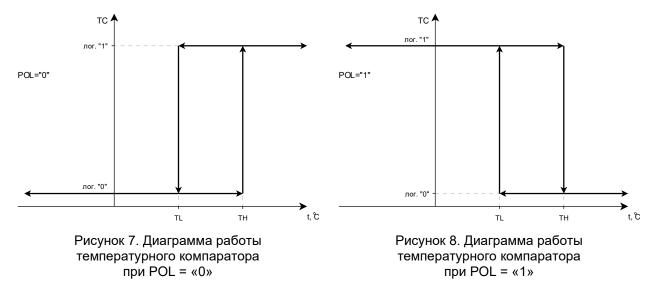
TH – настройка верхнего порога срабатывания температурного компаратора (8 бит).

TL – настройка нижнего порога срабатывания температурного компаратора (8 бит).

Таблица 9. Настройка порога переключения (бит 7 – старший, бит 0 – младший)

Значение порога		Биты						
переключения, °С	7	6	5	4	3	2	1	0
+125	0	1	1	1	1	1	0	1
+100	0	1	1	0	0	1	0	0
-50	1	1	0	0	1	1	0	1
-60	1	1	0	0	0	0	1	1

Бит 7 знаковый: «0» – температура положительная; «1» – температура отрицательная.


Для преобразования положительной температуры необходимо значение порога переключения перевести из десятичного числа в двоичное.

Для преобразования отрицательной температуры необходимо значение порога переключения взять по модулю, перевести из десятичного числа в двоичное и побитово инвертировать.

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

POL – настройка полярности выхода температурного компаратора.

Графики работы температурного компаратора в зависимости от полярности представлены на рисунках ниже (Рисунок 7, Рисунок 8).

Примечание:

Для нижнего порога TL в положительном диапазоне из заданной температуры необходимо вычесть 1 перед переводом в двоичный код.

Для верхнего порога ТН в отрицательном диапазоне к заданной температуре необходимо прибавить 1 перед переводом в двоичный код.

Разность между порогами TL и TH должна составлять:

- в диапазоне от −60°C до −10°C не менее 6,0°C;
- в диапазоне от -10° С до $+60^{\circ}$ С не менее $4,0^{\circ}$ С;
- в диапазоне от +60°C до +125°C не менее 6,0°C.

ROM – активация ПЗУ. Настройка активирует ПЗУ для TH, TL, POL. Настройка необходима для использования температурного компаратора в режиме «HARD».

Примечание:

Для корректной работы микросхемы в режиме «SOFT» в 0x27 адрес бит 6 необходимо записать лог. «0» (Таблица 8).

Обращаем внимание, документация носит ознакомительный характер.
При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Программирование микросхемы, режим «HARD»

Программирование микросхемы:

- 1) Произвести настройку микросхемы для одного адреса (см. пункты 1–4 «Настройка микросхемы, режим «SOFT»);
 - 2) Подать на вывод PR напряжение +9,2 В в течение 200 мс;
 - 3) Повторить пункты 1-2 для других адресов микросхемы;
- 4) **Важно!** Для корректной работы микросхемы в режиме «HARD» в 0x27 адрес бит 0, 4, 6, необходимо записать лог. «1» (Таблица 8).

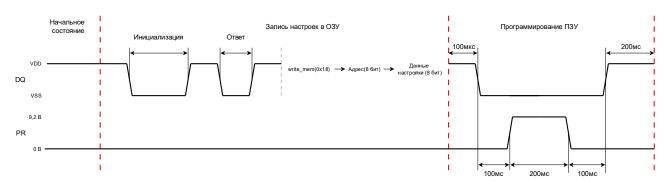


Рисунок 9. Временная диаграмма программирования одного адреса

Для чтения памяти микросхемы необходимо:

- 1) Произвести инициализацию (см. пункт «Инициализация», Рисунок 4);
- 2) Подать команду Read_mem (код команды 0х99) Чтение памяти;
- 3) Задать 8-ми битный адрес строки младшим битом вперед (Таблица 8);
- 4) Считать 8 бит данных (Таблица 8).

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Габаритный чертеж

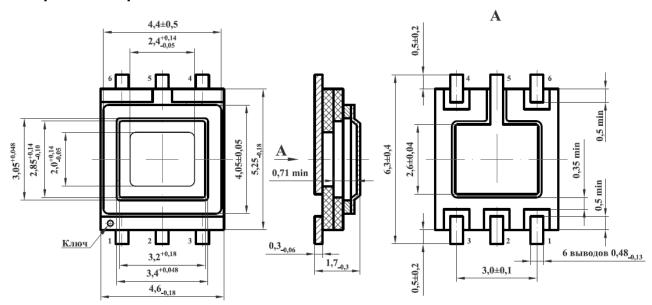


Рисунок 10. Габаритный чертеж корпуса 5221.6-1 (размеры в мм)

Примечание: основной теплопроводящей поверхностью микросхемы является металлизированное дно корпуса.

Информация для заказа

Обозначение	Маркировка	Корпус	Температурный диапазон
5400TP125-015			
АЕНВ.431260.659ТУ	A015	5221.6-1	−60°C…+125°C
карта заказа КФЦС.431260.015-015Д16			

Обращаем внимание, документация носит ознакомительный характер. При разработке аппаратуры необходимо руководствоваться КД: технические условия АЕНВ.431260.659ТУ, карта заказа КФЦС.431260.015-015Д16

Лист регистрации изменений

Дата	Версия	Изменения
03.04.2025	1.0	Исходная версия
13.11.2025	1.1	Обновлен пункт «Электрические параметры микросхемы»: — обновлена таблица 1. Обновлен пункт «Режимы эксплуатации»: — обновлена таблица 2. Обновлен пункт «Конфигурация и функциональное описание выводов»: — обновлена таблица 3. Обновлен пункт «Рекомендуемая схема применения»: — обновлен рисунок 3.